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Abstract 

 
 
Despite that COSIN project is focussed on the technological networks of Internet and the WWW, 

scale-free networks are present in several other fields of interest as those of biology, social 

science and genomics. All the applications in this field concur to the formation of the new 

science of complexity and ultimately help the progress in the understanding of technological 

networks. This deliverable is devoted to illustrate these studies on complexity and the summary 

that has been made in a special book on COSIN activity that is in press for the World Scientific 

Editor. The cover of this book together with the contents of the draft manuscript are reported in 

the Appendix. 
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According to one commonly accepted definition, a system is complex when it cannot be split into 

smaller components whose behaviour and function can be understood individually, to be then re-

assembled at a later stage. Rather, a complex system should be studied as a whole. Networks are 

therefore well suited to representing complex systems, since their interconnectivity already 

visually signals the difficulty of breaking them apart. 

 

Since the connectivity patterns are paramount to understanding a network’s behaviour, we 

should first ensure that the graph representation of the real system is a faithful one. A thorough 

analysis of the nodes and edges detection methods, and of their possible pitfalls, is thus 

necessary. 

In a series of papers, we have shown that some data mining techniques can indeed skew the 

measurements introducing large systematic errors. 

If the measurement is performed using the edges of the networks to carry some probe signals, 

such as the traceroute command in the Internet, the large scale statistical distributions of the 

network topological quantities can appear rather different from the real ones: random Poisson 

graphs can turn into scale-free graphs [1,2], and scale-free graphs can change their characteristic 

exponents[3], because low degree nodes are more difficult to detect, whereas the nodes in the tail 

of the distribution will be almost faithfully represented due to their high degrees. A theoretical 

analysis of this issue has led Dall’Asta et al.[4,5] to find the optimal ratio of source/destination 

pairs so to minimize the number of probes still capturing the real large scale structure of the 

network. These results advance in parallel with new distributed measurement efforts from 

various consortia such as DIMES (www.netdimes.org) and PlanetWeb (a consortium of more 

than 200 universities worldwide that should become public in the next few months) that indeed 

aim at getting a multi-source view of the Internet. 

 

Caldarelli et al.[6] and Petermann and De Los Rios [3] showed that a protein interaction graph 

can appear as scale-free if it is only possible to discover edges representing interactions between 

proteins that are stickier than a certain threshold, which is a stated property of present detection 

methods, and also practitioners of the field have realised that the measurement method itself can 

heavily distort the resulting graph [7]. 

 

COMPLEX NETWORKS 
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These results stress that the reliability of the data, although clearly a fundamental issue any field 

of science, has been a focus of research only very recently in the field of complex systems, and 

COSIN members have been playing a central role in these developments. 

 

[1] A. Lakhina, J.W. Byers, M. Crovella and P. Xie, Sampling biases in IP topology 

 measurements, Technical report BUCS-TR-2002-021, Department of Computer Science, 

 Boston University. 

[2] A. Clauset and C. Moore, Accuracy and scaling phenomena in Internet mapping, Phys. 

 Rev. Lett. 94, 018701 (2005). 

[3]• T. Petermann and P. De Los Rios, Exploration of scale-free networks: Do we measure the  

 real exponents?, Eur. Phys. J B 38, 201-204 (2004). 

[4]  L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez and A. Vespignani, Statistical 

 theory of Internet exploration, Phys. Rev. E 71, 036135 (2005). 

[5]• L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez and A. Vespignani, Traceroute-

 like exploration of unknown networks: a statistical analysis, Lecture Notes in Computer 

 Science 3045 (2005) and cond-mat/0406404. 

[6]• G. Caldarelli, A. Capocci, P. De Los Rios and M.A. Muñoz, Scale-free networks from 

 varying vertex intrinsic fitness, Phys. Rev. Lett. 89, 258702 (2002). 

[7] J.-D.J. Han, D. Dupuy, N. Bertin, M.E. Cusik and M. Vidal, Effect of sampling on topology 

 predictions of protein-protein interaction networks, Nature Biotechnology 23, 839-844 

 (2005). 
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Traditionally, mathematical models for the spread of a disease have relied on differential 

equations, describing the dynamics of spreading within uniformly mixed populations. The basic 

premise of uniform mixing is that all individuals in a group are equally likely to become 

infected. The spreading process itself is then captured using compartments, i.e. individuals 

belonging to epidemiological classes such as susceptible (S), exposed (E), infective (I) and 

recovered (R), between which the flows of population are described with rate equations. Within 

this framework, the simplest model is the widely-utilized SIR (Susceptible-Infected-Removed) 

model in which susceptible individuals may become infected and continue to infect others until 

finally removed from the system due to recovery, death, or containment. When an epidemics 

spreads over a network (of individuals, computers etc.), the large scale topology can play a major 

role in the velocity of diffusion of the pathogen agent and in its prevalence. A fundamental result 

has been obtained by Pastor-Satorras and Vespignani [8], who showed that the global scale-free 

property of graphs makes them more sensitive to epidemic spreading and confer to the pathogen 

a larger resilience.  

 

Figure 1: The scale free network of SARS infection 

EPIDEMIC SPREADING 
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The local properties have been instead investigated by Petermann and De Los Rios [9,10], who, 

by developing new numerical approaches to epidemic spreading, have shown that different 

networks with the same average degree but different levels of local connectivity behave 

differently, with more locally interwoven networks being more resistant to infection.  

These results show that in a complex system both global properties (being scale free) and local 

ones (local connectivity) significantly affect the system behaviour. This is further evidence that a 

complex system has to be studied taking into account many different scales at once.  

 

[8] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale free networks, Phys. 

 Rev. Lett. 86, 3200-3203 (2001). 

[9]• T. Petermann and P. De Los Rios, Role of clustering and gridlike ordering in epidemic 

 spreading, Phys. Rev. E 69, 066116 (2004). 

[10]• T. Petermann and P. De Los Rios, Cluster approximations for epidemic processes: a 

 systematic description of correlations beyond the pair level, J. Theor. Biol. 229,  1-11 

 (2004). 
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• Food Webs 

Another typical case of networks in nature is represented by the Food Webs. In food webs we 

have that the various elements of an ecosystem represent the vertices of a graph whose edges are 

the predation relationships. Apart the ubiquitous scale-free distribution for the degree [11] 

indicating that evolution selected some organisms able to predate on very different species, one 

of the most interesting question is related to investigate if this kind of network has been shaped 

by evolution in order to optimise some cost function.  

 
Figure 2: An example of a small Australian Food web. 

One of the solution proposed was presented by Garlaschelli et al. [12] the idea is that the 

complexity of the network can be reduced according to two experimental facts. The first one is 

that the system is close. This means that every species ultimately must predate on primary 

producers that transform minerals, water and energy from sunlight into living matter. Secondly a 

layer division of the vertices according to the distance from the primary producers has an 

explicite meaning. Indeed at any level of predation only 10% of resources passes to the predator, 

this means that the largest the distance (in the topological sense of number of steps) from 

primary producers, the lower the amount of resources obtained.  

Using these two empirical facts, the whole network can be described with a reasonable degree of 

accuracy by the spanning tree where cycles are removed by means of a BFS procedure starting 

on the primary producers.  While the universality of the results obtained is  still under debate 

[13], this method seems to well describe the various ecosystems. 

Biological Networks 
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• Taxonomies 

Though modern systematic biologists consider it more reliable to describe relationships 

between species via phylogenetic trees (hierarchical structures following the steps of evolution 

from ancestral species to modern ones), also for their being less arbitrary, the classical taxonomic 

classification is still widely used. Introduced in the XVIII century by the Swedish naturalist Carl 

von Linné, taxonomy is based on morphological and physiological observations and it groups all 

species in a set of different hierarchical levels very much similar to a genealogic tree. Any 

classification group in the taxonomic tree is generally called a taxon. Because of the positive  

relationship between the phylogenetic  relatedness of two taxa and their morphological and 

ecological similarity, the taxonomic tree of a particular flora should contain information on the 

processes that shape it. The distribution of the number of subtaxa per taxon at one specific 

taxonomic level has been widely studied starting with the work of Willis [15] and Yule [16]. 

Willis observed in 1922 that the distribution of the number ng of genera containing a number ns 

of species in the set of all flowering plants is a power-law with exponent about -1.5. In 1924 

Yule proposed a branching process model to explain this distribution. Since then the shape of 

taxonomic abundance distributions has been object of study (later, in 1993, B. Burlando [17] 

extended these results to other pairs of taxonomic levels and observed similar behaviours for the 

distribution of the number nt of taxa with nsb subtaxa) [18,19,20] and models have been proposed 

in order to reproduce this behaviour [19,20].  
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Figure 3: The taxonomic tree representing the Flora of Colosseo in 1874 

Caretta Cartozo et al [21] show  that for any of these data sets we find statistical properties 

that are stable in time and universal with respect to geographic and climatic environments. On 

this purpose we adopt a graph representation of the taxonomic tree. We assign a vertex for each 

taxon and an edge is drawn between two vertices i,j if the corresponding subtaxon j belongs to 

the taxon i. At the highest level, all species are eventually grouped in a same taxon; this implies 

that the resulting topology obtained is a particular kind of graph called a tree. In most cases the 

statistical properties of such graphs are universal (the frequency distribution of the number of 

links per site k (i.e. the degree) is distributed according to a power- law of the kind P(k) ∂ k-γ  

with an exponent γ  between 2 and 3) suggesting a possible unique mechanism for the onset of 

such common features [13]. 
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Figure 4: The degree distribution of various taxonomic trees 

Even if at the moment it is impossible to determine what have been the evolutionary forces 

that shaped this peculiar distribution of offsprings between the various taxa, Caretta Cartozo  et 

al. believe that they can use the value of the exponent in order to distinguish between real 

ecosystems and random collection of species. This result would allow to measure quantitatively 

the naturality of different environments. 

 

Figure 5: A comparison between real ecosystems and random collection of species.  
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12) Montoya, J.M.; Sole , R.V. Small world patterns in food webs. Journal of  Theoretical 

Biology, 214, 405—412  (2002). 

13) •Garlaschelli D. Pietronero L.. Caldarelli G. Universal Scaling Relation in Food Webs, 

Nature 423, 165 (2003). 

14) •Arenas A. Camacho J. and Garlaschelli D. Pietronero L. Caldarelli G. Food Web 

Topology Nature 435 E3 and E4 (2005). 

15) Willis, J. C. Age and area. Cambridge University Press, Cambridge 1922. 

16) Yule, G. U. A mathematical theory of evolution based on the conclusions of Dr. J. C. 

Willis, Phil. Trans. B 213, 21-87 (1924). 

17) Burlando, B. The fractal dimension of taxonomic systems. Journal of Theoretical 

Biology, 146, 99-114 (1990); ibid, The fractal geometry of evolution. Journal of 

Theoretical Biology, 163, 161-172 (1993).  

18) Enquist, B. J., Niklas, K. J. Invariant scaling relations across tree-dominated 

communities. Nature, 410, 655-660, (2001). 

19) Enquist, B. J., Haskell, J. P., Tiffney, B. H. General patterns of taxonomic and biomass 

partitioning in extant and fossil communities. Nature, 419, 610-613, (2002). 

20) Webb, C. O., Exploring the phylogenetic structure of ecological communities: an 

example for rain forest trees. American Naturalist 156 145-155 (2000) 

21) • Caretta-Cartozo C., Barthelemy, M, Garlaschelli D., Ricotta C. Caldarelli G. Scale-free   

properties of taxonomy data. Prolc. Nat. Acad. Sciences XX, xxxx (2005). 
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One of the biggest challenges of text analysis techniques for the WWW is developing tools that 

are language independent. Many approaches to text analysis are based on preconstructed 

databases, e.g. WordNet [22]. In our work, we have tested the utility of spectral methods for 

clustering words according to their semantic and syntactic role in texts. Previous studies had 

shown that spectral methods can cluster words according by semantic field [23]. We have shown 

that spectral methods do cluster words according to their part-of-speech in a syntactic 

dependency network [24]. Although the network structure is given a priori by a syntactic 

dependency corpus, the network could be easily replaced by a word co-occurrence network that 

can be easily constructed from raw text [25, 26]. Fig. 6 shows a plot of the Romanian syntactic 

dependency network. 

The extraction of information from texts needs knowing in advance which words within a 

sentence are more likely to be related. We have explored the probability that two words at a 

certain distance are syntactically related [27]. The analysis of the Euclidean distance between 

syntactically related words in a sentence suggested an exponential decay of the probability that 

two words are syntactically related with distance. A maximum entropy approach was used for 

explaining the exponential decay found in real sentences. The main message is that most of 

information within texts is at short distances (neighbours or second neighbours within a 

sentence). Long-distance syntactic relations are possible but rare. That theoretical insight 

suggests that applications can safely take advantage of the locality of syntactic links between 

words. 

Many applications dealing with large texts, e.g. search engines, need some knowledge about the 

growth of vocabulary size (i.e. the number of different words). The growth of vocabulary size 

depends on the exponent of Zipf’s law for word frequencies [28]. It is known that the exponent 

of Zipf’s law deviates from its typical value in large texts [28, 29]. It was believed that those 

radical deviations were only found in large corpora. We have shown that those radical variations 

are also found in single author texts [30]. In the case of single author texts, the variations seem to 

be due to changes in the balance between maximizing the information transfer and saving cost in 

word use. The deviations in the exponent of Zipf’s law in large corpora do not seem to be caused 

by that mechanism. Those should be the subject of further research. 

Test Analysis for the WWW 
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A substantial amount of time was spent in improving previous models of network optimization in 

collaboration with L. Buriol. The main idea is trying to explain the topology of some scale free 

network (e.g. the WWW) through a process that minimizes the distance between links but 

minimizes the amount of links used [31]. The collaboration with L. Buriol consisted of 

improving the algorithms use by Ferrer i Cancho & Solé [31] so that larger networks could be 

studied and the topologies could be studied using the state of the art of network analysis 

tecniques. That project is still in progress.  

 

 

 
 

Fig. 6. The global syntactic dependency network of a Romanian corpus.  (drawing by S. 

Valverde). Vertices are Romanian words and connections indicate syntactic dependencies. The 

network has 5,563 vertices. 

 

22) Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the 

ACM 38, 39-41. 

23) •Capocci, A., Servedio, V. D. P., Caldarelli, G. & Colaiori, F. (2005). Detecting 

communities in large networks. Physica A 350, 491-499.  

24) •Ferrer i Cancho, R., Capocci, A. and Caldarelli, G. (2005). Spectral methods cluster 

words of the same class in a syntactic dependency network. cond-mat/0504165. 

25) Ferrer i Cancho, R. Solé, R. V. (2001). The small-world of human language. Proceedings 

of the Royal Society of London B 268, 2261-2266 
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26) Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M. & 

Alon, U. (2004). Superfamilies of evolved and designed networks. Science 303, 1538-

1542. 

27) •Ferrer i Cancho, R. (2004). The Euclidean distance between syntactically linked words. 

Phys. Rev. E 70, 056135. 

28) Ferrer i Cancho, R. and Ricard V. Solé (2001). Two regimes in the frequency of words 

and the origin of complex lexicons:  Zipf's law revisited. Journal of Quantitative 

Linguistics 8, 165-173. 

29) Montemurro, M. A. & Zanette, D. (2002). Frequency-rank distribution in large samples: 

phenomenology and models. Glottometrics 4, 87-98.  

30) •Ferrer i Cancho, R. (2005). The variation of Zipf's law in human language. European 

Physical Journal B 44, 249-257. 

31) Ferrer i Cancho, R. & Solé, R. V. (2003). Optimization in complex networks. In: 

Statistical Mechanics of complex networks, Pastor-Satorras, R. et al. (eds.). Lecture 

Notes in Physics 625, 114-125. Berlin: Springer. 
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Small world networks are clear examples of systems that have to be studied as 

whole. They are graphs with a small diameter, consequence of a few long range 

connections (shortcuts), and a high degree of local interconnectedness: the global 

and local scales appear explicitly in the definition itself. Yet, they are not just 

mathematical structures: they are believed to play a pivotal role in the organization 

of social and communication networks, and there is growing evidence that they 

govern the large scale architecture of the brain. Petermann and De Los Rios [11] 

have provided a simple argument to discriminate between small-world and 

Euclidean networks as the distribution of the lengths of long range connections 

changes. According to their results, small-world networks occupy a wide region in 

the parameter space defining the shortcut distribution. Their findings also show 

that small-world networks can be realized in systems subject to strong resources 

constraints, and provide therefore a framework for the interpretation of data from 

real-world networks. 

 

[32]• T. Petermann and P. De Los Rios, Spatial small-world networks: a wiring cost perspective, 

 arXiv:cond-mat/0501429. 
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APPENDIX 1 
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