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Abstract 
 

 
Here we present the analysis that has been done by various groups in the project. The first analysis 

that has been done is based on the state of the art analysis that has been done by broder et al. In their 

work they analyse some statistical distributions of the whole system. By analysing an even lager 

crawl we are able to retrieve some of the original results and to propose a description of the system 

alternative to that of the bowtie. In order to proceed further in the analysis of the communities of the 

webgraph we present some preliminary results obtained from geographical data sets (obtained 

outside the project) and thematic datasets collected within the project. Since the complete analysis 

of both is rather time consuming the results of these studies will be very likely presented in 

forthcoming projects (namely DELIS). This work is a natural continuation of Deliverable D8. 
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Introduction 
 
The Web can be viewed as a directed graph,  G=(V,E) where V is the set of (static) HTML pages, 
and the edges correspond to hyperlinks 
We will be using various basic graph theoretic definitions and algorithms that can be found in any 
graph theory textbook. Here, we only remind the reader of the definitions of strongly and weakly 
connected components. 
 
A set of nodes S forms a strongly connected component (SCC) in a directed graph, if and only if for 
every pair of vertices u,v œ S, there exists a path from u to v, and from v to u. A set of nodes S 
forms a weakly connected component (WCC) in a directed graph G, if and only if the set S is a 
connected component of the undirected graph Gu that is obtained by removing the directionality of 
the edges in G. 
Kleinberg et al [1] and Albert  and Barabasi [2] demonstrated that the in-degree of the Web graph 
follows a power-law distribution. Later experiments  by Broder et al [3] on  a crawl of 200M pages 
from 1999 by Altavista confirmed it as a basic property:  
the probability P(ku) that thethe in-degree ku of a vertex  u is distributed according to a power- law 
with  
 

P[ku] ∂ ku
−γ   where γ @ 2.1. 

 
The sizes of the SCC components also follow a power- law. The out-degree distribution follows an 
imperfect power law distribution 
 
Broder et. al [3] studied also the structure of the Web graph, and presented the bow-tie picture. 
They decomposed the Web graph into the following components (see Figure 1 ): 
 

 
 

Figure 1 The picture of the Shape of the Web as presented in Ref.[3] 
 

• the CORE, consisting of the largest SCC in the graph; 
• the IN, consisting of nodes that can reach the CORE; 
• the OUT, consisting of nodes  that are reachable from the CORE; 
• the TENDRILS, consisting of nodes not in the CORE that are reachable 
• from the nodes in IN, or can reach the nodes in OUT; 
• the DISC, consisting of the remaining nodes. The fractal structure of the Web has been 

conjectured in several works.  
 
Dill et al. [4]  demonstrated that the Web exhibits self-similarity when considering ``Thematically 
Unified Clusters'' (TUCs), that is, sets of pages that are brought together due to some common trait. 
They argue that these TUCs form a navigational backbone of the Web. 
Thus the Web graph  can be viewed as the outcome of a number of similar and independent 
stochastic processes.   



 
 
 
The findings about the structure of the Web generated a flurry of research in the field of random 
graphs. Given that the standard graph theoretic model  of Erd\"os and  R\`eny~\cite{erdos} is not 
sufficient to capture the generation of the Web graph, various stochastic models were 
proposed~\cite{bar2,pennock,WebAsGraph}. Most of them address the fact that the in-degrees 
must follow a power-law distribution \cite{bar2}. The \emph{copying model}~\cite{WebAsGraph}  
generates graphs with multiple bipartite cliques~\cite{KRR}. 
%Some of the most popular models 
%include the \emph{preferential attachment} model~ \cite{bar2} 
%and the \emph{copying model}~\cite{krrst}. 
 
Mining the inner structure of the Web 
 
    Algorithms 
The experiments presented in this section refer to a crawl collected by the WebBase project at 
Stanford and the dataset is composed by 360 millions of vertices and abut 1.5 billions of edges. 
Frontier vertices have been pruned to eliminate non significant data. The resulting Graph is then 
composed by 136 million of nodes and 1.2 billions of edges.   
This study has required to node CR2 UDRLS the development of  a complete algorithmic 
methodology for handling very large Web graphs.  As a first step authors of Ref. [5] need to 
identify the individual components of the Web graph. For this they need to be able to perform graph 
traversals.  
 
The link structure of the Web graph takes several gigabytes of disk space, making it prohibitive to 
use traditional graph algorithms designed to work in main memory.  Therefore, we  implemented  
algorithms that achieve remarkable  performance improvements when processing data that are stored 
on external memory.  We implemented semi-external algorithms, that use only a small constant 
amount of memory for each node of the graph, as well as fully-external  algorithms that use an 
amount of main memory that is independent of the graph size. 
 
We  implemented the following algorithms. 

• External versions of Breadth and Depth First search, based on random accesses to the disk, 
in order to avoid maintaining  the data in main memory.  

• The traditional traversal algorithms that work in main memory. 
• A semi-external graph traversal that allows to determine the verteces reachability for 

determining vertex reachability using only 2 bits per node. The one bit is set when the node 
is first visited, and the other when all its neighbors have been visited (we say that the node is 
``completed'')The algorithm operates on the principle that the order in which the vertices are 
visited is not important. Starting from an initial set of nodes, it  performs multiple passes 
over the data, each time visiting the neighbors of the non-completed nodes. A semi-external 
Breadth First Search that computes blocks of reachable  nodes and splits them up in layers 
according to their distance from the root.  In a second step, these layers are sorted to produce 
the standard BFS traversal of the graph  

• A semi-external Depth First Search (DFS) that needs  12 bytes plus one bit for each node in 
the graph. This traversal has been deve loped following that approach suggested by Sibeyn et 
al. [6] . 

• A semi-external algorithm for computing all SCCs of the graph based on the semi-external 
DFS. 

• An algorithm for computing the largest SCC of the Web graph. The algorithm adopts a 
heuristic approach that exploits the structural properties of the Web graph to compute the  
biggest SCC,  using a simple reachability algorithm. As a result of the algorithm  The 
algorithm exploits the fact that the largest SCC is a sizable fraction of the Web graph.  Thus, 



by sampling a few nodes of the graph, we can  obtain a node of the largest SCC with high 
probability.  

 
We can then identify the nodes of the SCC  using the reachability algorithm. As an end product we 
obtain the bow-tie regions of the Web graph, and we are able to compute all the remaining SCCs of 
the graph efficiently  using the semi-external DFS algorithm. 
 
A software library containing a suite of algorithms for generating and processing massive Web 
graphs is available online http://www.dis.uniroma1.it/~cosin/.   
A detailed presentation of some of these algorithms and a study of their efficiency has been 
presented in [7].  A complete description of these algorithms is available in the extended version of 
this work [8]. 
 
 Results 
As a first step in the analysis of the Web graph, node CR2 UDRLS repeated the experiments of 
Broder et al. [3] on the macroscopic analysis of the graph computing the in-degree, out-degree and 
WCC size distributions.  
 
 
 

 
Figure 2: The proportion of the various component of the Web Graph 

On the left the AltaVista Graph on the right the analysis on the WebBase Graph 
 
 
As expected, the in-degrees, and the sizes of SCCs follow a power- law distribution, while the out-
degree distribution follows an imperfect power- law. 
 

 
Figure 3 the plot of the Frequency distributions of WCC sizes and out-degree 

 
A complete description of the Work done is given in Ref.[5]  Here we only summarize the 
following facts: 
 

• The inner structure as regards degree distributions and sizes of WCC and SCC is the same 
for the IN and OUT component. 



• The CORE has entry points that is to say nodes connected with at least one node in the IN 
region and has also exit points  that point at least to a node in the OUT region. Bridges are 
told those vertices that are both entry and exit points. Surprising the vast majority of 
vertices (~72 %) are EXIT points. This means that about 80% of the core is connected to 
the external regions, while only 20% belong to inner core region. 

• One can also define connectors those vertices of the core that have a single in-coming and 
out-coming link. A connector forms a petal if if they coincide. Surprisingly only 6% of the 
CORE vertices are connectors  (47% of which are petals). 

 
Putting together the various feature it seems that a different macroscopic picture of the WWW must 
be done. Instead of Bow-tie a Daisy seem to represent better the shape of the graph, 
 
 

 
Figure 4 The daisy structure of the WWW 

 
 
Correlation between vertices the paradox of WWW 
 
A distinctive characteristic of a network is whether its vertices tend to connect to similar or unlike 
peers, the so-called mixing property. Similarity of vertices is established by comparing some scalar 
quantity measuring a given qualità of the vertex. Borrowing terms from sociology, networks where 
properties of neighboring nodes are positively correlated are called  assortative, while those 
showing negative correlations are called disassortative. Thus, assortative and disassortative mixing 
patterns indicate a generic tendency to connect respectively to similar or dissimilar pears. A 
scalar quantity naturally associated to each node in a network is its degree, measuring the number of 
neighboring nodes. The mixing by degree (MbD) is often measured by looking at how the average 
degree <knn> of the nearest neighbors of a node depends on the degree k of the node itself, and is a 
signature of correlations between other networks quantities. The mixing is assortative 
when  <knn> grows with k and disassortative when it decreases. 
The relevance of MbD lies in that, beyond discriminating among different network morphologies it 
reflects important structural properties.  
Assortative networks are found to be more resilient against the removal of vertexes than 
disassortative ones. This implies, for example, that, when trying to block infection or opinion 
spreading within a social network or to protect a computer network against cyber-attacks, different 
strategies are needed depending on the MbD properties of the underlying network. Moreover, it has 
recently been observed that the sign of degree correlations affect other properties of complex 
networks such as synchronization . 
 



Recent studies show that social networks exhibit assortative MbD, whereas technological and 
biological ones display disassortative MbD[9]. The Word Wide Web (WWW), a paradigmatic 
example of world-wide collaborative effort among millions of users and publishers, represents an 
anomaly:  
one would expect it to show assortative mixing, similarly to other social and collaborative networks, 
while it shows evidences of anticorrelations [10], and disassortative MbD [11], which would rather 
put it in the realm of technological networks. 
 
The aim of the publication realised by node C01 INFM [12] is to demonstrate that in the WWW 
case, for example, links with different direction have different roles and meanings: the outgoing 
links are drawn by 
individual web--masters, while they have no control on incoming links. A page gains authority from 
incoming links, while it increases a peer's authority by pointing to it. Nevertheless, the WWW has 
been often analyzed and modeled as an undirected network for what concerns its mixing properties. 
 
The main result is that, in most cases, assortativity patterns are reversed when the direction of links 
in a network is taken into account: positive correlations among the degree of a node and the average 
degree of both upstream and downstream neighbors, considered separately, can disappear or even 
reverse when the different nature of neighboring sites is ignored and their degree are averaged 
together. Though this result may appear counterintuitive, the fact that pooling together data of 
different nature can generate spurious correlations is well known in the statistical literature, and 
often encountered in social sciences, medical statistics and finance, where, although it contains no 
logical contradiction, it is known as Simpson's paradox [13]. 
 
 
In  Ref. [12] Capocci et al. demonstrate the crucial role of link directions in the analysis of mixing 
patterns in complex networks. Their main result is that assortativity patterns are often reversed once 
a network is  considered as directed.  In the growing complex network models we have analyzed, we 
find positive correlations between the degree of a node and the average degrees of both upstream 
and downstream nodes, while fictitious correlations emerge when the different nature of the nodes 
is not taken into account. This is an example of the Simpson's paradox that may occur any time data 
from different sources are pooled together. The correlation that appears in the pooled data is 
spurious: a positive correlation between two quantities before pooling results negative after pooling 
and vice versa.  In the particular case of growing networks the degrees of upstream and downstream 
neighbors of a node are positive correlated with the degree of the node itself, however the 
correlation with upstream neighbors is much weaker. For increasing degrees, the fraction of weakly 
correlated neighbors increases. The overall neighbors' average degree can then decrease as a result 
of the varied proportion, misleadingly suggesting the presence of negative correlations.  In the case 
of BA networks, this effect exactly balances that of positive correlations. Our findings suggest the 
need for more detailed analysis of real directed networks, such as the WWW, with a special focus 
on the direction of links between nodes. The counterintuitive properties described above may 
explain the anomalous exclusion of the WWW from the realm of social networks based on its 
observed disassortative mixing. 
 
 
Detecting Communities 
 
Several empirical methods to detect communities have already been proposed.  The most successful 
is an algorithm, introduced by Ref [14] (NG--algorithm), based on the edge betweenness, which 
measures the fraction of all shortest paths passing on a given link, which is related to the probability 
that a random walk on the network runs over that link. By removing links with high betweenness, 
one progressively splits the whole network into disconnected components, until the network is 
decomposed in communities consisting of single nodes. The outcome of the algorithm is 
represented by a dendrogram, i.e. a tree--like diagram where each branching corresponds to a 
splitting event.  



Though this method has been shown to be very powerful in cases where some a priori knowledge of 
the a community structure is given, it has two main disadvantages: firstly, it does not give an 
indication of the resolution of the clustering, and thus it needs extra information as input  (like the 
expected number of clusters); secondly, its outcome is independent on how sharp the  partitioning of 
the graph is.  
An alternative way to tackle the problem, which is the one made by COSIN participants, is by 
spectral analysis [15]. Previous approaches to graph partitioning from spectral analysis have been 
mostly developed in the computer science community to the purpose of finding the best 
allocation of processes on processors in parallel computers, and are based on iterative bisection.  
These algorithms have the same limitation of the one based on the edge betweenness, since they 
give no indication of when the bisection should terminate, and thus need extra information on the 
expected number of communities. Moreover, while repeated bisection is an efficient method for 
process allocation, when applied to the search of community structure it is by its own nature not 
guaranteed to reach the best or ``most natural'' partition. 
 
The activity of the consortium in this area has been focussed in the interpretation of the spectral 
analysis of adjacency matrix in terms of minimisation principles.  
We first review the spectral properties of some matrices defining the network, and show how some 
relevant information on the cluster structure is contained in the first few nontrivial eigenvectors.  To 
make it clear how the relation between communities and eigenvectors components arises, we then 
recast the problem in terms of constrained optimization of some function.  The algorithm that we 
propose, uses correlations among components of different eigenvectors. We formulate the algorithm 
for undirected weighted networks, and then we propose a modified version suitable to take into 
account link orientation. Our method allows to correctly detect communities in sharply partitioned 
graphs.  However, in most real cases, one deals with large complex networks, where there is no well 
defined partition, and the question of finding the community structure can be ill--posed. In such 
cases, our method can be used to analyze the structure of the network around a given node, or to 
find a set of nodes well connected to a given one. 
 
As an example of this second application, we test the algorithm on a large scale data--set from a 
psychological experiment of free word association, where it proves to be successful both in 
clustering words, and in uncovering mental association patterns. 
 
 Detecting community structure by spectral analysis 
Spectral methods are based on the analysis of the adjacency matrix A, whose element aij is equal to 
1 if i points to j and 0 otherwise.  Actually, it is more convenient to study not the adjacency matrix 
itself but rather either one of two matrices that can be derived from it, namely: 
 

• the Laplacian matrix  L = K - A 
• the normal matrix  N = K-1A. 
 

where K is the diagonal matrix with elements kii= degree of node i  is the number of nodes in the 
network.  In most approaches, referring to undirected networks, A is assumed to be symmetric.  
 
The matrix N has always the largest eigenvalue equal to one, associated to a trivial constant 
eigenvector, due to row normalization.  In a network with an apparent cluster structure, N has also a 
certain number m-1 of eigenvalues close to one, where m is the number of well defined 
communities, the remaining eigenvalues lying a gap away from one. The eigenvectors associated to 
these first m-1 nontrivial eigenvalues, also have a characteristic structure: the components 
corresponding to nodes within the same cluster have very similar values x_i, so that, as long as the  
partition is sufficiently sharp, the profile of each eigenvector, sorted by components, is step--like. 
The number of steps in the profile corresponds again to the number m of communities.  A similar 
information is encoded in the non-negative definite Laplacian matrix, where the eigenvalues close 
to zero are associated to clusters. 
 



The spectrum of the Laplacian matrix has a number of null eigenvalues equal to the number of 
connected components of the graph. The eigenvectors spanning the kernel of L can be chosen such 
that they have constant components on one connected subgraph and are zero elsewhere. In a similar 
way, the normal matrix, whose eigenvalues lie in the range between -1 and 1, has as many unity 
eigenvalues as the number of connected components of the graph. 
 
Let us think for simplicity to a case with just two connected components. The matrix $L$ will be 
block diagonal, and the null eigenvalue will be twofold degenerate.  As soon as a small perturbation 
is added to L such to couple the two components (in terms of the network this means adding one or 
more links connecting the two subnets), the degeneracy is removed: there is just one null eigenvalue 
with trivial constant eigenvector, and the other null eigenvalue is shifted slightly above zero, still a 
gap away from the remaining eigenvalues. The idea is that this eigenvector, being a small 
perturbation to one that is constant on each connected component, it is still approximately constant 
on each component, as long as the perturbation is small enough. 

 
Figure5  Undirected network employed as an example, with two  

disjoint complete graphs of order 3 and 4.  
 
The graph in Figure 2 is made up of two disjoint completely connected components of order 3 and 4 
respectively.  In this case, the Laplacian matrix is block diagonal (one 3x3 block and one 4x4 
block), with an appropriate labeling of the nodes.  The null eigenvalue is then present with twofold 
degeneraci and the corresponding eigenspace may be spanned by two orthogonal 
eigenvectors of the type: 
 

• (1 1 1 0 0 0 0) 
• (0 0 0 1 1 1 1) 

 
Next we add one link between two vertices lying in two disjoint components as shown in Figure by 
the dashed edge.  This perturbation removes the degeneracy of the null eigenvalue (in fact we have 
only one connected component in the graph now), while at the  zeroth order the previous two 
eigenvectors change into a linear combination of them. The result is that now we have two 
eigenvectors given respectively by: 
 

• (1 1 1 1   1  1  1) 
• (a a a -b -b -b -b) 

 
with a and b chosen such to preserve orthogonality with the trivial eigenvector. By observing at the 
structure of the first non trivial eigenvector we are thus able to discern the community structure of 
the graph, by simply considering as belonging to the same community the vertices correspond ing to 
the index of this eigenvector with similar values. The situation remains substantially unaltered if 
more than 2 clear communities are present. In case there are m well defined communities in the 
graph, we would have as zeroth approximation a linear combination of m vectors.  
We would also have now m eigenvalues close to zero, indicating that there are actually m clear 
communities in the graph. 
The reasoning with the normal matrix is substantially the same except that the null eigenvalue of the 
laplacian matrix is to be replaced by the unity and that the eigenvectors need not to be orthogonal as 
the normal matrix is not symmetric. 



 
Translation into an optimization problem  
It is actually possibile to recast the eigenproblem into an optimization problem. With the most 
general applications in mind, instead of the adjacency matrix A, we focus on the weighted matrix 
W, whose elements wij are assigned the intensity of the link (i,j). We consider undirected graphs 
first, and then we pass to the most  general directed case.  
 
Consider the following constrained optimization problem:  
Let z(x) be defined as 
 

z(x) = ½ Σi,j1,..,S (xi - xj )2 wij 
 
where xi are values assigned to the nodes, with some constraint on the vector x, expressed by  

Σi,j1,..,S (xi xj mij) = 1  
where mij are elements of a given symmetric matrix M. The stationary points of z over all x subject 
to this constraint are the solutions of  
 

 (D - W) x = µ M x  
 
where D is the diagonal matrix giving the degree of the weighted adjacency matrix and µ is a 
Lagrange multiplier. 
 
Different choices of the constraint M leads to different eigenvalues problems.  

• choosing M=D leads the eigenvalues problem D-1W x = (1-2µ) x, (Normal)   
• while M=1 leads to (D-W)x = µx.(Laplacian)  
 
Thus, solving the eigenproblem is equivalent to minimizing the function z with the constraint 
given, where the xi's are eigenvectors components. The absolute minimum corresponds to the 
trivial eigenvector, which is constant. The other stationary points correspond to eigenvectors 
where components associated to well connected nodes assume similar values. 

 
The study of the eigenvectors profiles and the eigenvalues has practical use only when a clear 
partition exists, which is rarely the case. In most common occurrences, the number of nodes is too 
large and the separation between the different communities is rather smooth.  Thus communities 
cannot be simply detected by looking at the first nontrivial eigenvector: the typical eigenvector 
profile is not step- like, rather it is a smooth curve.  We resolve this issue by combining information 
from the first few eigenvectors, and extracting the community structure from correlations between 
the same components in different eigenvectors. In this way, one can still efficiently 
detect sets of well connected nodes. 
 
When the values of the components of the first non—trivial eigenvector are not well distinct, as 
they are in the toy example above, the information coming from other eigenvectors can be used to 
give extra information.  The idea is that nodes belonging to the same community, and thus having 
similar values for the corresponding second eigenvector components, are expected to have distinct 
values, but again close to each other, in the next few eigenvectors. Thus one has to look at 
correlations between corresponding components of different eigenvectors, rather than the value of 
the components itself.  
A natural way to identify communities in an automatic manner, is by measuring the correlation 

 
rij =  (<xi xj >- <xi > <xj >)/ [(<xi 2>- <xj

2 >) (<xi >2- <xj >2)]1/2 
 
where the average <…> is over the first few nontrivial eigenvectors. The quantity $r_{ij}$ 
measures the community closeness between node i and j. Though the performance may be 
improved by averaging over more and more eigenvectors, with increased computational effort,  



one finds that indeed a small number of eigenvectors suffices to identify the community to which 
nodes belong, even in large networks. 
 
To detect the community structure in a directed network, one replaces, in the previous analysis, the 
matrix $W$ with a matrix Y=WWT.  This corresponds to replacing the directed network with an 
undirected weighted network, where nodes pointing to common neighbors are connected by a link, 
whose intensity is proportional to the total sum of the weights of the links pointing from the two 
original nodes to the common neighbors. 
Then, one performs the analysis on the undirected network as described previously. Thus, the 
function to minimize in this case is  
 

y(x) =  Σi,j,l1,..,S (xi - xj )2 wil wjl  
 
Defining  Q as the diagonal matrix whose entries are the gneralisation of the degree  

qij= δ ij Σi,j,l1,..,S wil wjl  
the eigenvalue problem for the analogous of the generalized  normal matrix,  
 

Q-1 Y x = l x 
is equivalent to minimizing the function y  under the constraint 
   

Σi,j,l1,..,S xi xj  qij = 1 
 
Tested on simple examples of directed networks, the algorithm associated to the minimization of y, 
outperforms the one based  on the minimization of z. 
 
 An example from psychology: the free word association network 
To test this spectral correlation-based community detection method on a real complex network, we 
apply the algorithm to data from a psychological experiment reported in reference [16]. 
Volunteers participating to the research had to respond quickly by freely associating a word 
(response) to another word given as input (stimulus), extracted by a fixed subset.  The words given 
as responses were then used iteratively as stimuli. Scientists conducting the 
research have recorded all the stimuli and the associated responses, along with the occurrence of 
each association. One can build a network where words are nodes, and directed links are drawn 
from each stimulus to the corresponding responses, assuming that a link is oriented from the 
stimulus to the response. Weights are associated to each link, according to the frequencies of each 
association.  The resulting network includes 10616 nodes, with an average in-degree equal to about 
7. From this network we construct the weighted adjacency matrix W.  In this example, passing to 
the matrix Y means that we expect stimuli giving rise to the same response to be correlated. 
 

 
Figure 6: The words most correlated to  science,  literature and  piano in the  

eigenvectors of Q-1 W WT . Values indicate the correlation. 



  
This new method  detects communities of highly connected nodes within a network, by combining 
information from the first few eigenvectors, and extracting the community structure from 
correlations between corresponding components in different eigenvectors.  The algorithm applies to 
the most general case of weighted and directed networks. Unlike previous spectral approaches, 
this method is not based on iterative bisection. The method correctly detects communities in sharply 
partitioned graphs, without a priori knowledge of the expected number of communities. Also, in 
cases where there is no well defined partition, it can still be used to analyze the structure of the 
network around a given node, or to find a set of nodes well connected to a given one.  As an 
example we have analyzed the weighted directed network obtained from a large data--set from a 
psychological experiment of free word association.  The algorithm proves to be successful in 
clustering nodes (in this case, words) according to reasonable criteria, and provides an automatic 
way to extract the most connected sets of nodes to a given one in a set of over 104 vertices.  
 
 
Geographic subsets 
 
The result over the large crawl of WebBase have been tested over 3 differents geographic subsets. 
experiment with four different crawls. The first three crawls are samples from the Italian Web (the 
.it domain), the Indochina Web (the .vn, .kh, .la, .mm, and .th domains), and the UK Web (the .uk 
domain) collected by the ”Language Observatory Project” and the ”Istituto di Informatica e 
Telematica” using UbiCrawler [17]. The sizes of the crawls are shown in Table 1. 
 

 Italy  Indochina Uk Web Base 
Nodes 41.3M 7.4M 18.5M 135.7M 
Edges 1.15 G 194.1 M 298.1M 1.18G 
Core 29.8 M (72.3%) 3.8 M (51.4%) 1.2M (65.3%) 44.7M (32.9%) 
In 13.8 K  (0.03%) 48.5K (0.66%) 312.6K (1.7%)  14.4M (10.6%) 
Out 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39.3%) 
Tendrils 6.4K     (0.01%) 50.4K (0.66%) 139.4K (0.8%) 17.1M (12.6%) 
Disc 1.25 K (0%) 101.1K(1.4%) 80.2K (0.4%) 6.2M (4.6%) 

 
TABLE 1. Sizes and bow-tie components for the different crawls and the Alta Vista graph 
 
Essentially the kind of the analysis is the same already done for the fourth largest crawl and that 
brought to the definition of the daisy model.  
Given the fact that the in-degree, out-degree, and SCC size distributions in the IN and OUT 
components are the same as for the whole Web graph, one could wonder if the Web has a self-
similar structure [6, 12], that is if the bow-tie structure repeats itself inside the IN and OUT 
components. 
The first indication that the self-similarity conjecture is not true in this case comes from the fact that 
there exists no sizable SCC in the IN and OUT components that could play the role of the CORE in 
a potential bow-tie. Moreover we surprisingly discovered that there is no giant weakly connected 
component \ (WCC) in either of the two components. In fact, there is a large number ofWCCs per 
component and their sizes follow a power law distribution.  
In order to better understand how the nodes in IN and OUT are arranged with respect to the CORE, 
we performed the following experiment. We condensed the CORE in a single node and we 
performed a forward and a backward BFS. This allows us to split the nodes in the IN and OUT 
components in levels depending on their distance from the CORE.  
In all graphs, the depths of the components are relatively small. Furthermore, most nodes are 
concentrated close to the CORE. Typically, about 80-90% of the nodes in the OUT component are 
found within the first 5 layers. For the WebBase graph, although the OUT is much deeper, with 580 
levels, more than 58% of its nodes are at distance 1 from the CORE, and 93% are within distance 5. 
Furthermore, after level 305 there exists only a single chain of nodes that extends until level 580, 
making the effective depth of the OUT 305.  



Therefore, one can conclude that the IN and OUT components are shallow and highly fragmented. 
They are comprised of several sparse weakly connected components of low depth. Most of their 
volume consists of nodes that are directly linked to the CORE. 
As regards the study of the CORE there are two main aspects: 
(1) its relation with the IN and OUT components 
(2) its connectivity properties 
the first question can be approached by measuring the entry points to the CORE (nodes that are 
pointed to by at least one node in the IN component), the exit points (nodes that point to at least one 
node in the OUT component and the bridges (nodes that are both entry and exit points).  
Regarding the connectivity,  there are few nodes with just one in and out link that could make the 
CORE weakly connected. These are the  connectors (or petals if the source of the incoming link, 
and the target of the out-going link are the same node) previously defined. Moreover the CORE 
seems resilient to targeted attacks performed by deleting not only nodes with total degree bigger 
than a prefixed threshold but also the k nodes with the highest in-degree and k nodes with the  
highest out-degree. In the first case, we observe that the threshold on the total degree must become 
as low as 100 in order to obtain an SCC of size less than 50% of the CORE. 
There are two ways to interpret these results. The first is that there are no obvious failure points in 
the CORE, that is, strong hubs or authorities that pull the rest of the nodes together, and whose 
removal from the graph causes the immediate collapse of the network.  
In order to disconnect the CORE you need to remove nodes with sufficiently low degree. On the 
other hand, note that one can manage  to reduce the largest SCC to 35-40%of the original by 
removing about 1Mnodes. However this is less than 1% of the total nodes. In that sense the CORE 
is vulnerable to targeted attacks. 
 
 
Thematic subsets 
In order to collect several sets of thematic web pages, node C01 INFM togheter with Centro Studi e 
Ricerche “E. Fermi”  deployed a two steps strategy. 

 
• In the first part of our crawling, it has been used a software to query Google and get 10 

thousand web pages in different languages containing a specific word.  
 

• Later a second software has been used in order to follow this procedure: 
1. check if the page contained the specific word chosen, and proceed only if it did 
2. count the outdegree of this page (the outdegree is the number of the links contained 

in a page) 
3. follow all the links of this page 
4. for each destination page check if it also contained the specific word we chose, and if 

so count the outdegree 
 

Therefore each set of data is made by a list of web URLs downloaded from Google (they actually 
contain a specific word with the outdegree of these pages). For each of these URLs are then 
collected the list of the web pages they pointed to, only if those ones contain the same word. This 
procedure is repeated for several steps (depth of research). The outdegree of all these pages is 
recorded and analysed. 
While this analysis is only at the beginning we already found some interesting results. By varying 
the depth of the search, the degree-distribution is almost in any case a power- law. This would 
suggest that the system is scale- invariant over several orders of magnitude since similar distribution 
holds also for very local subsets of the system. 



           
Figure 7 The distribution of the subset of pages (90.000) containing the word physics 

 
As very preliminary results it has also been noticed that the clustering of the pages collected in this 
way, varies considerably with the topic chosen, thereby calling for a social analysis of the contents.  
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