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Abstract 
 

 
The analysis of real data is an unavoidable part of the scientific process, since only real data can 

falsify models and direct the theoretical approach. Within COSIN we have analysed datasets 

from different domains, from technological to biological with the twofold goal of providing a 

benchmark for the modelling community (and for Deliverable D24), and to find hints of the first 

principles that govern the formation and evolution of large complex networks. Our results, 

starting from the preliminary analysis made in deliverable D5 from a general perspective, show 

that current models fall short of providing satisfactory descriptions of real systems and that 

topology based models will have, in the near future,  to be modified in order to take into account 

the dynamics of the systems that are described using the network framework. 
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Every science advances through the close interaction of experiments and theory. In the case of 

large complex networks, it is not yet possible to perform extensive experiments at the scale of 

the whole systems. Therefore data must come from suitable probes able to observe the features 

of the networks at a global scale. Once large scale data have been obtained, their statistical 

characteriza tion is the first step toward understanding the mechanisms that shape the formation 

of large networks, which in turn is an essential ingredient to formulate accurate models. There is 

therefore a natural overlap between the results of this deliverable and the ones of D24. 

In this report the focus is on the findings rather than on the techniques and technicalities that 

have been used, which are nonetheless not less important, since the methods used to obtain large 

scale data could in principle deform the appearance of the real network, introducing systematic 

errors in the measurement process. 

 

 

We have used data from different sources, such as the National Laboratory of Applied Network 

Research (NLANR), of the Cooperative Association for Internet Data Analysis (CAIDA) and of 

the Topology Project at the University of Michigan.  

Various authors have established the power- law distribution of the Internet degrees at different 

levels (IP, routers, Autonomous Systems) [1,2], and many models are known that are able to 

reproduce such feature. Yet Vázquez et al. [3] have shown that most of the same models are 

unable to reproduce higher level correlations found in real data. These results clearly points to 

the importance of a deeper characterization of the Internet through a thorough analysis of the 

data currently at hand. 

By analyzing the Autonomous Systems network at different time frames (1997 to 1999), 

Vázquez et al. [3] found that its statistical properties are stationary, which is a first important 

result, since models are more easily solved in the stationary state. The typical power- law 

distributions of the degrees were re-obtained, along with the power- law distributions of the node 

betwenness. These results are easily compatible with most models. Yet, current models are 

mostly featureless as far as nearest neighbour correlations are concerned: the clustering 

coefficient ck and the average connectivity of nearest neighbours, knn, of a node of degree k do 

not depend on k, whereas the same quantities on the AS network behave as ck~k -0.75 and knn~k -0.5. 

Among the models checked in [3], only the fitness model of Bianconi and Barabási [4] showed 
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correlations that are qualitatively in agreement with the real data. We refer to the Report for 

“D24: Modelling the Internet graph” for a more extensive review of the models we have 

subsequently proposed to reproduce also nearest neighbour correlations.  

The clustering coefficient of a node of degree k counts the number of triangles it belongs to, 

normalized by k(k-1)/2, which is the maximum number of triangles it could belong to. The 

clustering coefficient is a measure of the number of cycles of length three present in the network. 

The concept is therefore easily extended to longer loops. Caldarelli et al. [5] have shown that the 

number of quadrilaterals in real networks largely exceed, by one to four order of magnitudes, the 

results for random graphs with the same size, average degree and degree distribution. This is a 

clear signature of relevant correlations in real networks that must be recovered by any model. 

Bianconi et al. [6] have found that although the number of long length cycles in the Autonomous 

Systems network is larger than for random networks, it can be predicted by using simple nearest 

neighbour correlations: the AS ne twork is therefore “markovian”. This result is important both 

for a better social and economic understanding of the rules governing the AS network and for the 

modelling efforts: indeed it suggests that the unknown precise underlying mechanisms forging 

the AS network shape are likely to involve only considerations about pairs of nodes that become 

connected, disregarding the properties of second and farther away neighbours. Very recently 

Ángeles Serrano et al. [7] have proposed a model where some more detailed microscopic 

decision making behaviour is introduced, which is able to more closely reproduce the 

correlations observed in [6]. 

Analyzing Round-Trip-Times (RTT) of packets travelling over the Internet, Percacci and 

Vespignani [8] and Carbone et al. [9] have found that, once normalized by the geographical 

distance d of the source-destination pairs, they are power-law distributed.  The quantity RTT/d is 

the velocity of the packet, which in turn represents a measure of the quality of the Internet 

performances. The power- law distribution is a clear indication that performances are very 

heterogeneous over the Internet: improving the Internet therefore does not amount solely to 

improving the average velocity, which would benefit only the “average” user, but also to reduce 

the statistical fluctuations, a result that would positively affect all users. 

 

 

The statistical analysis of data is important, but only if their reliability is assessed. Actually, it 

has been pointed out that the exploration itself of the Internet, based mainly on the traceroute 

command, can be biased toward scale-free networks even if the underlying network is not scale 

free [10,11], and that scale-free networks can see their real exponents changed [12]. The reason 
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for the skew in the data is that any algorithm exploring the network from a single source is likely 

to miss many edges, which affects in a more dramatic way low degree nodes that can be missed 

completely. As a consequence low degree nodes are underrepresented in the final degree 

distribution, to the advantage of its tail.  

The only way to restore the real network topology is to measure the network from multiple 

sources. Rigorous analytical results [13,14] show that by suitably choosing the ratio of sources 

and destinations the bias in the results can be corrected. This result is of particular relevance for 

massive Internet measurement projects currently on-going. The DIMES project (part of FP6 

Evergrow) is a large scale distributed exploration that should be able to implicitly implement  the 

recipes found analytically [15].  

 

 

Modelling economic data has relied for years on a number of assumptions that a thorough 

analysis of the growing amount of available data has shown not to hold. Hence finding as many 

possible patterns as possible in real data is of paramount importance to falsify widespread 

financial models. A network representation of stocks and their holders represent one method, 

although of course not the only one, to frame information from real data. 

Bonanno et al. [16,17] have analyzed the time-correlations between stocks in the New York 

Stock Exchange over a time window of 12 years, and then built the Minimal Spanning Tree 

(MST) of the stocks by connecting pairs of stocks according to a distance related to the 

correlations. The statistical properties of the MST from real data have been then compared to the 

ones from two commonly used models: uncorrelated Gaussian time series and the one-factor 

model. None of them is able to reproduce the same power- law distributions of the degrees and 

in-components of the nodes, clearly showing that a more refined modelling is needed that would 

start from premises that are in agreement with real data.  

Battiston [18] has analyzed the shareholding networks of the New York Stock Exchange, of the 

Nasdaq and of the Italian MIB. A shareholding network is in principle a bipartite network where 

vertices are companies and shareholders, and an edge connects a shareholder to a company when 

she posses some stocks of that company. Actually, shareholders are most often other companies 

equally well present in the stock market, so that it is more natural to represent a shareholding 

network as a directed network with edges directed from holders to owned companies. The 

number of effective holders of a stock is defined as the number of holders that effectively control 

the company, and the effective number of stocks controlled by holders is the effective number of 

companies that they can influence through their shares of stocks. Defining such objective 

measures makes it possible to compare disparate stock exchanges, and discover their profound 
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differences: the US markets have a more spread shareholding network, made of one large 

connected component, whereas the Italian one is made of 89 separate components. Moreover 

most MIB listed companies are controlled by a single holder, against the average six holders of 

the US companies. These results imply some tantalizing economic, social and historical 

considerations that go of course beyond the scope of the paper’s analysis. A further result 

coming from the analysis of the shareholding network is that the sizes of stock portfolios are 

power- law distributed and that the diversification of portfolios depends on their sizes as an 

algebraic function [19]: larger portfolios contain more different stocks. Again, this empirical 

finding is at odds with financial models that posit that portfolios can be indefinitely diversified 

irrespective of their size. 

Caldarelli and Catanzaro [20] have analyzed the social network of corporate boards. It is a 

bipartite network of directors and companies, where an edge is present between a company and a 

director if he/she sits in its board. It is then possible to construct the social network of directors, 

where two directors are connected if they sit in at least one common board. Not unexpectedly, 

the resulting network is small-world and with strong links, implying that some directors sit 

together in more than a single board. The consequences of this finding for the spread of insider 

information cannot be underestimated. 

Overall, these findings suggest on the one hand that many economic mathematical models 

currently widely used rest on wrong assumptions, and that a greater effort should be made 

toward a more realistic description of stock markets; on the other hand the structure of the 

shareholding and directors boards networks suggest the presence of different socio-economical 

mechanisms behind the US and Italian stock markets.  

 

 

Networks are finding growing application in the modelling of ecological data. The predator-prey 

relations that define food-webs are best expressed as edges of networks, and the taxonomic 

relations between species, genera, and so on are naturally represented as loop- less networks, that 

is, trees. 

Garlaschelli et al. [21] have analyzed the topological properties of 7 well characterized food-

webs, finding that they are optimized to efficiently transport energy (bio-mass) from the lowest 

to the highest trophic levels, approximately identified with herbivores and top predators 

respectively, although this kind of cartoon representation might be misleading. More 

importantly, through the definition and measurement of suitable topological quantities, they have 

been able to show that all the 7 food-webs behave in the same way, pointing to a universal 
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outcome for the optimization process. These results have sparked a lively debate mainly due to 

the scarcity of available data [22], which will for sure prompt ecologists to improve the quality 

of their field observations. 

Caretta Cartozo et al. [23] have studied the statistical properties of the taxonomic trees of the  

florae of different bio-geographical regions. Regardless of geographic location, climate and 

environment, all collections have universal statistical properties, different from the ones of a 

random sample of the same number of species taken from a pool of species from all over the 

world. These result show again that the final outcome of the organization of ecosystems is likely 

universal, which in turn prompts the search for the underlying mechanisms behind the self-

assembly of a working collection of species.  

Caldarelli et al. [24] have also shown that one of the properties that had been hailed as universal, 

namely the inverse square-law distribution of the sizes s of taxonomic levels at all levels, is the 

trivial consequence of the tree- like organization of taxonomic trees. Whether the trees come from 

real ecosystems or they are random collections of species, the tree- like structure inherent to 

hierarchical taxonomy leads to the inverse square law. Minimal and Random Spanning Trees 

built on random networks and on networks grown according to different models (see Report for 

D24) also show an inverse square distribution of the sizes of the sub-trees at all levels. These last 

results highlight the importance of a good choice of the topological quantities to analyze, since 

some of them do carry relevant information, whereas others do not.  

 

 

The topology of networks has received most of the attention over the years mainly because of the 

lack of data for the values, or weights, of the nodes and edges. Recently Barrat et al. [25] have 

had the opportunity to look to the weights of two networks, namely the world-wide airport 

network (WAN) and the scientist collaboration network (SCN), whose topological scale-free 

nature had already been established. The weights are more easily defined on the edges of the 

network: in the WAN the weight of an edge is the number of passenger seats available to travel 

with direct flights between the two airports connected by that edge; in the SCN the weight of an 

edge connecting two scientists is the number of co-authored papers. The weight of a network 

node (its strength) is then simply given by the sum of the weights of the edges it belongs to.   

The authors’ findings are that also the weights and strengths of the network are power- law 

distributed, and that there are correlations between the nodes’ degrees and their strengths. In the 

case of the SCN strengths and degrees are simply proportional, whereas in the WAN there is a 

non-trivial power-law relation.  
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All these results have called for new models that couple the evolution of the topology to the 

weights’ dynamics [26,27] (see Report for D24). 

 

 

Our efforts for this deliverable, in connection with D24, have been as much as possible to link 

the statistical analysis of data to the formulation of theoretical models. We have been able to 

show that, in many cases, current models are not satisfactory (see Report for D24) because either 

they do not reproduce the observed quantities or because even the model premises do not hold, 

as is the case of many financial models. 

At the same time it is important to stress that data must not be taken directly by face value: some 

COSIN members, and some other authors, have been able to show that the exploration methods, 

that is, the way vertices and edges are detected, can skew the data so that the observed topology 

can be close to a scale-free one even if the real network is not. 

The results for weighted networks, moreover, clearly point to a co-evolution of the topology and 

of the intrinsic features of nodes and edges, and future models will have to take this further 

ingredient into consideration. 
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