

Algorithms for network traffic analysis

COSIN
Coevolution and Self-organisation In dynamical Networks

 IST-2001-33555

Project: RTD FET Open Project IST-2001-33555

URL: http://www.cosin.org

Deliverable: nr.17, “Algorithms for network traffic analysis”

Contract: -Preparation Form http://www.cosin.org/doc/COSIN.xls

 -Annex 1 http://www.cosin.org/doc/annex1.ps

Author: Maurizio Patrignani patrigna@dia.uniroma3.it

Date: 24th October 2004

Status: Final version.

Abstract
As routing in the Internet follows a hierarchical scheme, the analysis of the
Autonomous System graph, where routing is determined at the higher level, is the
first step towards the study of traffic flows, routing changes, and routing instabilities
occurring in the Internet. In order to consolidate the theoretical foundations of such
studies, we first address the problem of obtaining correct data from the available data
sources. Second, we investigate the problem of computing the types of the
relationships between Autonomous Systems (ASes), showing the NP-hardness of the
problem and producing effective and efficient heuristics to approach it. Finally, we
study how clustering techniques can be adapted and improved in order to be used in
this domain and show how the clustered view of the AS graph can provide high level
information about the network evolution at different time scales.

 2

1. CONTENTS

1. CONTENTS...2

2. INTRODUCTION ...3

3. AN INVESTIGATION ABOUT DATA SOURCES ..4

BGP updates archives ..5

BGP routing tables archives...5

4. COMPUTING THE RELATIONSHIPS BETWEEN AUTONOMOUS SYSTEMS.................6

Complexity analysis...6

Algorithms and heuristics ..8

5. AN EXPLORATION OF CLUSTERING TECHNIQUES...10

Clustering indices and algorithms..10

Comparing a novel approach with the state of the art..10

Clustering the graph of Autonomous Systems...10

6. REFERENCES...11

7. APPENDIX..12

 3

2. INTRODUCTION

In the Internet packets are delivered to their destinations through a cooperative
process operated by intermediate systems called routers. The set of routers that are
under a single independent administrative organization, together with the cables that
connect them, compose an Autonomous System (AS). Currently, there are more than
18,000 ASes and their number is rapidly growing. Hierarchical routing imposes that
first the routing is determined at the Autonomous System level, deciding the
sequence of ASes to be traversed in order to reach the destination, and then at a lower
level, choosing the sequence of routers to be traversed inside each AS. Thus, the
comprehension of the relationships between ASes is the first step towards the
analysis of network flows, routing changes, and routing instabilities occurring in the
Internet. In fact, changes in the routing at the AS level will cause (sometimes
considerable) changes of the routing at the router level.
The cooperation between ASes guarantees the delivery of the packets through the
network, as they interact to coordinate the IP traffic delivery, exchanging routing
information with a protocol called Border Gateway Protocol (BGP) [1]. BGP is a
distance vector protocol which adopts a peculiar way of measuring the distance of a
destination. In fact the distance is not an absolute value, as it is for other distance
vector protocols, but is the length of the AS-path, that is the sequence of ASes to be
traversed in order to reach the destination. The AS-path is explicitly communicated to
the adjacent ASes when signalling the existence of a remote destination. This is why
BGP is sometimes classified as a path vector protocol. Thus, although each AS
exchanges traffic flows with a few neighbors (BGP peers), local and remote
adjacencies can be gathered from the logs of the BGP conversations between peers,
which contain the AS-path attached to each announcement. Due to this BGP
peculiarity, plenty of up-to-date and historic data is potentially available about the
ASes, their peerings, and the AS-level routes used to reach remote destinations.

The sequence of ASes used to reach a destination is decided by the kind of
relationships between the ASes that may allow or not to be traversed. These
relationships, as pointed out by several researchers (see, e.g. [2, 3]) can be roughly
classified into categories that have both a commercial and a technical flavor. A pair
of ASes such that one sells/offers Internet connectivity to the other is said to have a
provider-customer relationship. If two ASes simply provide connectivity between
their respective customers they are said to have a peer-to-peer relationship. Finally, if
two ASes offer each other Internet connectivity they are said to be siblings. Of
course, this classification does not capture all the shades of the possible commercial
agreements and technical details that govern the traffic exchanges between ASes but
should be considered as an important attempt toward understanding the Internet
structure.

Gao [4] studies, for the first time, the following problem. ASes are the vertices of a
graph (AS graph) where two ASes are adjacent if they exchange routing information;
the edges of such a graph should be labelled in order to reflect the type of relationship

 4

they have. In order to infer the relationships between ASes, Gao uses the information
on the degree of ASes together with the AS paths extracted from the BGP routing
tables. An AS path is the sequence of the ASes traversed by a connectivity offer
(BGP announcement). In [4] a heuristic is presented together with experimental
results. An analysis on the properties of the labelled graphs obtained with such
heuristics is provided in [5].

Subramanian et al. [6] formally define, as an optimization problem, a slightly
simplified version of the problem addressed in [4] and conjecture its NP-
completeness. They also propose a heuristic based on the observation of the Internet
from multiple vantage points, which does not rely on the degree of the ASes. Further,
they validate the results obtained by the heuristic against a rich collection of data sets.

Our contribution in the framework of the COSIN project is meant to consolidate the
theoretical foundations of such studies. In particular, we first address the problem of
obtaining correct data from the available data sources, namely archives of BGP
updates and archives of BGP routing tables (this research is described in Section 3 of
this deliverable). Second, following the line of research opened in [4, 6], we
characterize the complexity of the problem of computing the type of the relationships
between autonomous systems, showing both NP-completeness results and efficient
algorithms for solving specific cases (Section 4). Motivated by the hardness of the
general problem, we propose approximation algorithms and heuristics based on a
novel paradigm and show their effectiveness against publicly available data sets. The
experiments put in evidence that our algorithms performs significantly better than
state of the art heuristics.
Finally, we compare existing clustering techniques and propose a new one [7] that is
promising for coping with the complexity of this domain of research. In fact, we used
it to study the evolution of AS clusters through time [8] showing how the clustered
view could provide high level information about dynamic phenomena occurring in
the network at different time scales (Section 5).

3. AN INVESTIGATION ABOUT DATA SOURCES

Data about Internet routing at the Autonomous System level come from two different,
although strongly related, sources: BGP updates (information flowing through the
links between ASes) and BGP routing tables (information stored into the nodes of the
AS graph that can be dumped periodically). We considered both sources. It is
important to notice that, even if one is interested in the BGP routing tables only, it is
sometimes needed to retrieve the BGP updates falling into a specified time window.
Suppose, for example, that a BGP routing table R(tx) at time tx is needed, but only a
BGP routing table at time R(ty), with ty < tx , is available. Then, if the BGP updates
occurred in the interval [ty,tx] are retrieved, it is possible to “drag” R(ty), taking into
account the updates between ty and tx and producing the needed R(tx).

 5

BGP updates archives

Several archives, such as the Routing Information System of the RIPE NCC
(www.ripe.net) and the Oregon RouteViews database (www.routeviews.org), try
to give an answer to the need for information about current and historic routing in
the Internet by collecting BGP conversations between routers. We describe in [15]
a work that aims at integrating the data from different BGP-update sources. We
address the technological issues related to the data integration and the pitfalls that
could give rise to imprecise information if the query process does not take into
account the peculiarities and glitches of the repositories.
A peculiar problem arises when considering historical updates. In particular,
updates preceding year 2001 may have a poor synchronization. A methodology to
discover this is the following: measure the bursts (number of updates) of each
source (for example, a RIS or an Oregon RouteViews collector) and graphic the
correlation between a pair of sources. In some occasions it can be noticed that the
correlation is maximum if one source had the times translated of a certain amount
of seconds. If this comparison is made for all pairs of sources, this gives rise to a
collection of times which is consistent one with the others. Starting with 2001 the
clock of the machines was automatically set to ensure synchronization between
the collectors.

BGP routing tables archives

Data on the actual routing can be also collected by logging the BGP routing tables.
The RIS project dumps a BGP routing table three times per day (8:00, 16:00, and
24:00). The Oregon RouteViews project, instead, dumps a BGP routing table
every two hours. This implies that if a collection of AS-path is needed,
representing the status of the network at a specific time tx, two routing tables R(t1)
and R(t2), from RIS and Oregon RouteViews, respectively, must be retrieved and
“dragged” to time tx as described above, after retrieving the updates in the
intervals [t1,tx] and [t2,tx] from RIS and Oregon RouteViews, respectively.
Usually the resulting data is not purified and contains misleading information. The
most common problems are the following:

o Repetitions of paths. These can be undesired if the purpose of the
research is to discover which links between pair of ASes are used for
routing packets. In this case repeated paths can be efficiently eliminated
after sorting the routing table with respect to the AS-path field.

o Loops inside paths. Loops shouldn’t occur in AS-paths since the BGP
protocol imposes that a border router of AS x must discard any BGP
announcement received with an associated AS-path containing x.
However, sometimes loops can be introduced into the AS-paths by an
improper prepending command made on the BGP configuration of an
intermediate router. In this case, two are the possible alternatives: trying
to reconstruct the original AS-paths or discarding all AS-paths that
contain loops.

 6

o Illegal AS numbers. The last 1024 AS numbers are considered
“private” and should not be propagated into the Internet. However, some
AS-path contains a private AS numbers. In this case the AS-path can be
discarded or, alternatively, the illegal AS numbers could be removed.

o Prepending of ASes. As for repetitions of AS-paths, prepending can be
undesired if the purpose of the research is to discover the AS-paths used.

Further, other issues can alter data, like truncated data files, time-outs, lost
connections, or connections closed too early [8]. These kinds of problems can be
recognized by considering that a BGP dump is usually sorted by the prefix of the
announcements, starting from 0.0.0.0 and ending with 255.255.255.255. It follows
that incomplete data is easily recognizable from the fact that the prefixes falling in
the higher part of the IPv4 address space will be missing from the list of prefixes.

4. COMPUTING THE RELATIONSHIPS BETWEEN

AUTONOMOUS SYSTEMS

Complexity analysis

In [11-14] we solve a problem explicitly stated and left open in [6]. Namely, we
characterize the complexity of determining the relationships between ASes while
maximizing the number of valid paths, i.e., the number of paths coherent with the
edge labelling.
The first formulation of this problem was given in [4], where for the first time it
was noted that the types of relationships between ASes induce some constraints on
the BGP AS-paths that can be observed in Internet. In fact, a customer will never
announce a prefix obtained by a first provider to a second provider (because in
this way traffic between the two providers could flow through the customer
network). In a peer-to-peer relationship, both ASes announce their prefixes and
the prefixes of their customers, but they will not announce the prefixes received
from their providers and from other peer-to-peer links. These rules of thumb for
network administrators offer a precious hint on the kind of relationship occurring
between two adjacent ASes. Namely, if all the ASes obey to them, an AS-path
should be composed by a (possibly null) sequence of edges going from a customer
to a provider, a single (possibly missing) peer-to-peer edge, and a (possibly null)
sequence of edges going from a provider to a customer. The amount of AS-paths
that have this “valley-free” structure can be used as a measure of the goodness of
the inference heuristics. In [4], several kinds of possible relationships between
ASes are considered, and the problem of inferring them by observing the AS-paths
propagated by the BPG protocol is for the first time addressed without explicitly
formulating it as an optimization problem.
In [6], instead, the attention is focused on two kinds of relationships only: the
customer-provider and the peer-to-peer relationships. With this simplification, the

 7

problem of determining the relationships between ASes can be stated as an
optimization problem on an undirected graph [6]:

Type-of-Relationship (ToR) Problem: Given an undirected graph G and a set
of paths P, give an orientation to some of the edges of G to maximize the
number of valid paths in P.

In this formulation it is assumed that not directed edges correspond to peer-to-peer
relationships, that directed edges point to the provider, and that a valid path is a
“valley free” path with the structure described above.

In [11-14] we show that:

• We show that the problem is NP-hard in the general case and cannot even be

approximated within a factor of 1/n1-ε unless NP=coRP, where n is the number
of given paths;

• We show that the problem remains NP-hard in the case where all given paths

are short (i.e., have length at most l, where l is an arbitrary constant greater or
equal to 2) - more specifically, we even show that there is a constant less than
one such that it is NP-hard to approximate the problem within that constant
factor.

• We produce a linear time algorithm for determining the AS relationships in the

case in which the problem admits a solution that makes all paths valid (i.e.,
does not have any anomalies); and

• We use the linear time algorithm to show that for large portions of the Internet

(e.g., data obtained from single points of view) it is often possible to determine
the relationships between ASes without anomalies.

The first two complexity results are based on suitable reductions from problems
whose complexity is well known. The algorithm for inferring the AS relationships
in the case in which the problem admits a solution with all valid paths is obtained
by producing an instance of the the 2SAT problem starting from an instance of the
ToR problem.
First, in [11-14] it is shown that the ToR problem left open in [6] is equivalent to a
similar problem in which all edges must be oriented:

ToR-simple Problem: Given an undirected graph G and a set of paths P give
an orientation to all the edges of G to maximize the number of valid paths in P.

Based on this observation, it is possible to build an instance of the 2SAT problem
corresponding to the ToR-simple instance with the following rules [11-14]:

 8

o First give an arbitrary orientation to each edge (vi, vj) of G.
o For each directed edge (vi, vj) of G a variable xi,j is introduced. A true value

for xi,j means that, in the final orientation, (vi, vj) will be directed from vi to
vj (that is, the direction of the initial arbitrary orientation will be preserved),
while a false value means that (vi, vj) will be directed from vj to vi (that is,
the direction of the initial arbitrary orientation will be reversed).

o For each path p and three consecutive vertices vi-1, vi, vi+1 of p the following
four cases are possible, according to the arbitrary orientations that we have
given to the edges between vi-1, vi, and vi+1.

– Both edges are directed toward vi, i.e. such directed edges are (vi-1, vi)
and (vi+1, vi). We introduce clause (xi-1,i OR xi+1,i).

– Both edges are directed away from vi, i.e. such directed edges are (vi,
vi-1) and (vi, vi+1). We introduce clause (xi,i-1 OR xi,i+1).

– One edge is directed toward vi and the other toward vi+1, i.e. such
directed edges are (vi-1, vi) and (vi, vi+1). We introduce clause (xi-1,i
OR xi,i+1).

– One edge is directed toward vi-1 and the other toward vi, i.e. such
directed edges are (vi, vi-1) and (vi+1, vi). We introduce clause (xi,i-1
OR xi+1,i).

This procedure introduces n-2 clauses of two literals for each path of P with n
vertices. If the 2SAT formula composed by all the clauses admits a solution, it
can be found in linear time by using standard techniques, and the 2SAT
solution corresponds to an orientation for the ToR problem with all valid paths.

Algorithms and heuristics

Since in the general case the ToR problem is NP-hard, it is of practical importance
to develop efficient heuristics to find a good solution for it. We introduce
algorithms, based on novel approaches, for determining the relationships between
ASes with a large number of valid paths (or equivalently, a small number of
anomalous paths). For some of the algorithms we can prove that their solution is
guaranteed to be within a constant factor of the optimal solution [11-14]. Also, we
experimentally show that the proposed approaches lead to algorithms that perform
significantly better than the cutting edge heuristics of [6].

Our heuristics are mainly based on two different strategies, both relying on the
relationship between the ToR instance and the 2SAT instance described above.
The first strategy consists of using approximation algorithms for MAX2SAT,
while the second strategy consists of using the mapping of the ToR instance to the
2SAT instance in order to find a maximal subset of paths admitting a solution
without invalid paths. Both approaches are described in [11-14], and their
effectiveness is compared with that of [6].

 9

Using approximation algorithms for MAX2SAT. An approximation
algorithm for MAX2SAT finds an assignment to the variables of the 2SAT
instance so that the number of satisfied clauses is satisfied. As it is shown
above, for each path of P with n vertices of the ToR instance the corresponding
2SAT instance has n-2 clauses. Thus, an approximation algorithm for
MAX2SAT which maximize the number of satisfied clauses is not guaranteed
to maximize the number of the corresponding valid paths of the ToR problem.
However, in [11-12] it is shown that by using a SDP-based heuristics for
approximating the MAX2SAT problem, a good solution can be found for the
original ToR instance too.

Computing a maximal ToR instance admitting an easy solution. A simple
strategy for computing a maximal set of paths admitting a solution without
invalid paths could be the following. Starting from the empty set, add all the
paths one-by-one, each time testing if the set admits an orientation without
anomalies. The test can be performed in linear time by exploiting the algorithm
described above. If the insertion of a path makes the set not orientable, then it
is discarded, otherwise it is added to the set. At the end of the process we have
a maximal set of paths. However, this simple strategy is infeasible. In fact we
would have to run the testing algorithm millions of times. Even if each run
takes only one second, it could take weeks until the maximal set is computed.

Motivated by the above consideration, we propose in [13-14] a two-phase
approach. In the first phase, we compute a very large (albeit not maximal) set
of valid paths with an ad-hoc technique. In the second phase, we check if the
discarded paths can be reinserted with the method described above.

The first phase, i.e., the computation of the initial very large set of valid paths,
is performed by starting with all paths in P and removing iteratively all the
paths that use an edge (vi, vj) corresponding to a variable xi,j of the
corresponding 2SAT formula which generates a contradiction (that is, can not
be satisfied). Observe that at each iteration, since we remove all the paths
traversing a specific edge of the AS graph, the literals associated with such an
edge disappear from 2SAT. At the end of the first phase, we have a large set P′
of paths for which there is an orientation of the graph that makes all paths in P′
valid. In the second phase, we consider each path π in P \ P′ and check whether
there is an orientation that makes all paths in P′ union {π} valid. If this is the
case, we add π to P′, otherwise we discard π and leave P′ unchanged. At the
end of the second phase, we have a maximal set P′ of paths that admits an
orientation without anomalies, and we compute such an orientation with the
above described algorithm.

 10

5. AN EXPLORATION OF CLUSTERING TECHNIQUES

Clustering indices and algorithms

Clustering is an important issue in the analysis and exploration of data. Roughly
speaking, clustering consists in discovering natural groups of similar elements in
data sets. An interesting and important variant of data clustering is graph
clustering, also motivated by the growing interest in network analysis.
A natural notion of graph clustering is the separation of sparsely connected dense
subgraphs from each other. Several formalizations have been proposed. However,
the understanding of current algorithms and indices is still rather intuitive. In
particular, we note that it is not precisely known how well indices formalizing the
relation between the number of intra-cluster and inter-cluster edges measure the
quality of a graph clustering. Moreover, there exists no conclusive evaluation of
algorithms that focus on such indices.

Comparing a novel approach with the state of the art

As a first step towards understanding the consequences of particular conceptions,
we concentrate on the indices and algorithms mentioned above. We give in [7] a
summary of clustering indices and conduct an experimental evaluation of graph
clustering approaches. The already known algorithms under comparison are the
iterative conductance cut algorithm presented in [9] and the Markov clustering
approach from [10]. By combining proven techniques from graph partitioning and
geometric clustering, we also introduce a new approach that compares favorably
with respect to flexibility and running time [7].

Clustering the graph of Autonomous Systems

In [8] we applied the novel approach to graph clustering introduced in [7] to the
problem of clustering the graph of the Autonomous Systems with the purpose of
understanding the dynamic phenomena occurring in the network. We analyzed the
data collected by the Oregon RouteViews project (www.routeviews.org) during
the last few years. Our results confirmed known facts about the stability of the
Internet. We were able to measure major trends and noticed that events occurring
on a smaller time-frame, like worm-attacks, misconfigurations, outages, DDoS
attacks, etc. seem to have a very diverse degree of impact on the AS graph
structure resulting from the clustering, which suggests that these techniques could
be used to distinguish some of them.

 11

6. REFERENCES

1. John W. Stewart, BGP4: Inter-Domain Routing in the Internet, Addison-Wesley,

Reading, MA, 1999.
2. C. Alaettinoglu, Scalable Router Configuration for the Internet, Proc. IEEE IC3N,

October 1996.
3. Geoff Huston, Interconnection, Peering, and Settlements, Proc. INET, June 1999.
4. Lixin Gao, On inferring autonomous system relationships in the internet,

IEEE/ACM Transactions on Networking, 9(6), pag. 733—745, Dec 2001.
5. Zihui Ge, Daniel Ratton Figueiredo, Sharad Jaiswal, and Lixin Gao, On the

Hierarchical Structure of the Logical Internet Graph, Proc. SPIE ITCom 2001.
6. Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and R.H.

Katz, Characterizing the Internet Hierarchy from Multiple Vantage Points, Proc.
IEEE INFOCOM 2002, 2002.

7. Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on Graph
Clustering. In Proceedings of the 11th Annual European Symposium on
Algorithms (ESA'03), volume 2832 of Lecture Notes in Computer Science, pages
568-579. Springer-Verlag, 2003.

8. Marco Gaertler and Maurizio Patrignani, "Dynamic Analysis of the Autonomous
System Graph", in Proceedings of IPS 2004, International Workshop on Inter-
domain Performance and Simulation, Budapest, Hungary, 22-23 March, 2004.

9. Kannan, R., Vampala, S., Vetta, A.: On Clustering Good, Bad and Spectral. In:
Foundations of Computer Science 2000. (2000) 367-378

10. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht (2000)

11. Thomas Erlebach, Alexander Hall and Thomas Schank, “Classifying Customer-
Provider Relationships in the Internet” Proceedings of the IASTED International
Conference on Communications and Computer Networks (CCN 2002),
Cambridge, USA, November 4-6, 2002, pp. 538-545.

12. Thomas Erlebach, Alexander Hall, Thomas Schank: Classifying Customer-
Provider Relationships in the Internet. TIK Report Nr. 145, July, 2002.

13. Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia, "Computing
the types of the Relationships between Autonomous Systems", Technical Report
RT-DIA-73-2002, Dipartimento di Informatica e Automazione, Università di
Roma Tre, Rome, 2002.

14. Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia, "Computing
the Types of the Relationships between Autonomous Systems", in Proceedings of
IEEE INFOCOM 2003, The Conference on Computer Communications, The 22nd
Annual Joint Conference of the IEEE Computer and Communications Societies.

15. Giuseppe Di Battista, Federico Mariani, Maurizio Patrignani, and Maurizio
Pizzonia, "Archives of BGP Updates: Integration and Visualization" in
Proceedings of IPS 2003, International Workshop on Inter-domain Performance
and Simulation, Salzburg, Austria, 20-21 February, 2003, pages 123-129.

 12

7. APPENDIX

The following papers are attached to this deliverable

Appendix 7.1 Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments

on Graph Clustering. In Proceedings of the 11th Annual European
Symposium on Algorithms (ESA'03), volume 2832 of Lecture Notes
in Computer Science, pages 568-579. Springer-Verlag, 2003.

Appendix 7.2 Marco Gaertler and Maurizio Patrignani, "Dynamic Analysis of the

Autonomous System Graph", in Proceedings of IPS 2004,
International Workshop on Inter-domain Performance and Simulation,
Budapest, Hungary, 22-23 March, 2004.

Appendix 7.3 Thomas Erlebach, Alexander Hall, Thomas Schank: Classifying

Customer-Provider Relationships in the Internet. TIK Report Nr. 145,
July, 2002.

Appendix 7.4 Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia,

"Computing the Types of the Relationships between Autonomous
Systems", in Proceedings of IEEE INFOCOM 2003, The Conference
on Computer Communications, The 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies.

Appendix 7.5 Giuseppe Di Battista, Federico Mariani, Maurizio Patrignani, and

Maurizio Pizzonia, "Archives of BGP Updates: Integration and
Visualization" in Proceedings of IPS 2003, International Workshop on
Inter-domain Performance and Simulation, Salzburg, Austria, 20-21
February, 2003, pages 123-129.

Experiments on Graph Clustering Algorithms�

Ulrik Brandes1, Marco Gaertler2, and Dorothea Wagner2

1 University of Passau, Department of Mathematics & Computer Science,
94030 Passau, Germany. brandes@algo.fmi.uni-passau.de

2 University of Karlsruhe, Faculty of Informatics, 76128 Karlsruhe, Germany.
{dwagner,gaertler}@ira.uka.de

Abstract. A promising approach to graph clustering is based on the
intuitive notion of intra-cluster density vs. inter-cluster sparsity. While
both formalizations and algorithms focusing on particular aspects of this
rather vague concept have been proposed no conclusive argument on
their appropriateness has been given.
As a first step towards understanding the consequences of particular con-
ceptions, we conducted an experimental evaluation of graph clustering
approaches. By combining proven techniques from graph partitioning and
geometric clustering, we also introduce a new approach that compares
favorably.

1 Introduction

Clustering is an important issue in the analysis and exploration of data. There
is a wide area of applications as e.g. data mining, VLSI design, computer graph-
ics and gene analysis. See also [1] and [2] for an overview. Roughly speaking,
clustering consists in discovering natural groups of similar elements in data sets.
An interesting and important variant of data clustering is graph clustering. On
one hand, similarity is often expressed by a graph. On the other hand, there is
a growing interest in network analysis in general.

A natural notion of graph clustering is the separation of sparsely connected
dense subgraphs from each other. Several formalizations have been proposed.
However, the understanding of current algorithms and indices is still rather in-
tuitive. As a first step towards understanding the consequences of particular
conceptions, we concentrate on indices and algorithms that focus on the relation
between the number of intra-cluster and inter-cluster edges.

In [3] some indices measuring the quality of a graph clustering are discussed.
Conductance, an index concentrating on the intra-cluster edges is introduced
and a clustering algorithm that repeatedly separates the graph is presented. A
graph clustering algorithm incorporating the idea of performing a random walk
on the graph to identify the more densely connected subgraphs is presented
in [4] and the index performance is considered to measure the quality of a graph
� This work was partially supported by the DFG under grant BR 2158/1-1 and WA

654/13-1 and EU under grant IST-2001-33555 COSIN.

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 568–579, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

titto

titto

titto
Appendix 7.1

Experiments on Graph Clustering Algorithms 569

clustering. The idea of random walks is also used in [5] but only for clustering
geometric data. Obviously, there is a close connection between graph cluster-
ing and the classical graph problem minimum cut. A purely graph-theoretic
approach using this connection more or less directly is the recursive minimum
cut approach presented in [6]. Other more advanced partition techniques involve
spectral information as in [3,7,8,9].

It is not precisely known how well indices formalizing the relation between the
number of intra-cluster and inter-cluster edges measure the quality of a graph
clustering. Moreover, there exists no conclusive evaluation of algorithms that
focus on such indices. In this paper, we give a summary of those indices and
conduct an experimental evaluation of graph clustering approaches. The already
known algorithms under comparison are the iterative conductance cut algorithm
presented in [3] and the Markov clustering approach from [4]. By combining
proven techniques from graph partitioning and geometric clustering, we also
introduce a new approach that compares favorably with respect to flexibility
and running time.

In Section 2 the notation used throughout the paper is introduced and clus-
tering indices considered in the experimental study are presented. Section 3 gives
a detailed description of the three algorithms considered. The graph generators
used for the experimental evaluation are described in Section 4.1 and the results
of the evaluation are summarized in Section 4.3.

2 Indices for Graph Clustering

Throughout this paper we assume that G = (V, E) is a connected, undirected
graph. Let |V | =: n, |E| =: m and C = (C1, . . . , Ck) a partition of V . We call C
a clustering of G and the Ci clusters; C is called trivial if either k = 1, or
all clusters Ci contain only one element. In the following, we often identify a
cluster Ci with the induced subgraph of G, i.e. the graph G[Ci] := (Ci, E(Ci)),
where E(Ci) := {{v, w} ∈ E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1 E(Ci) is the set

of intra-cluster edges and E \ E(C) the set of inter-cluster edges. The number of
intra-cluster edges is denoted by m(C) and the number of inter-cluster edges by
m(C). A clustering C = (C, V \ C) is also called a cut of G and m(C) the size of
the cut. A cut with minimum size is called a mincut.

2.1 Coverage

The coverage(C) of a graph clustering C is the fraction of intra-cluster edges
within the complete set of edges, i.e.

coverage(C) :=
m(C)

m
=

m(C)
m(C) + m(C)

.

Intuitively, the larger the value of coverage(C) the better the quality of a
clustering C. Notice that a mincut has maximum coverage and in this sense
would be an “optimal” clustering. However, in general a mincut is not considered

570 U. Brandes, M. Gaertler, and D. Wagner

to be a good clustering of a graph. Therefore, additional constraints on the
number of clusters or the size of the clusters seem to be reasonable. While a
mincut can be computed in polynomial time, constructing a clustering with a
fixed number k, k ≥ 3 of clusters is NP-hard [10], as well as finding a mincut
satisfying certain size constraints on the clusters [11].

2.2 Performance

The performance(C) of a clustering C counts the number of “correctly interpreted
pairs of nodes” in a graph. More precisely, it is the fraction of intra-cluster edges
together with non-adjacent pairs of nodes in different clusters within the set of
all pairs of nodes, i.e.

performance(C) :=
m(C) +

∑
{v,w}�∈E,v∈Ci,w∈Cj ,i �=j 1

1
2n(n − 1)

.

Calculating the performance of a clustering according to this formula would
be quadratic in the number of nodes. Especially, if the performance has to be
computed for a sequence of clusterings of the same graph, it might be more
efficient to count the number of “errors” instead (Equation (1)). Maximizing the
performance is reducible to graph partitioning which is NP-hard [12].

1 − performance(C) =
2m (1 − 2coverage(C)) +

∑k
i=1 |Ci| (|Ci| − 1)

n(n − 1)
(1)

2.3 Intra- and Inter-cluster Conductance

The conductance of a cut compares the size of the cut and the number of
edges in either of the two induced subgraphs. Then the conductance φ (G)
of a graph G is the minimum conductance value over all cuts of G. For a clus-
tering C = (C1, . . . , Ck) of a graph G, the intra-cluster conductance α(C) is the
minimum conductance value over all induced subgraphs G[Ci], while the inter-
cluster conductance δ(C) is the maximum conductance value over all induced
cuts (Ci, V \ Ci). For a formal definition of the different notions of conductance,
let us first consider a cut C = (C, V \ C) of G and define conductance φ (C) and
φ (G) as follows.

φ (C) :=

1, C ∈ {∅, V }
0, C /∈ {∅, V } and m(C) = 0

m(C)
min(∑

v∈C deg v,
∑

v∈V \C deg v) , otherwise

φ (G) := min
C⊆V

φ (C)

Then a cut has small conductance if its size is small relative to the density of
either side of the cut. Such a cut can be considered as a bottleneck. Minimiz-
ing the conductance over all cuts of a graph and finding the according cut is

Experiments on Graph Clustering Algorithms 571

NP-hard [10], but can be approximated with poly-logarithmic approximation
guarantee in general, and constant approximation guarantee for special cases,
[9] and [8]. Based on the notion of conductance, we can now define intra-cluster
conductance α(C) and inter-cluster conductance δ(C).

α(C) := min
i∈{1,...,k}

φ (G[Ci]) and δ(C) := 1 − max
i∈{1,...,k}

φ (Ci)

In a clustering with small intra-cluster conductance there is supposed to be at
least one cluster containing a bottleneck, i.e. the clustering is possibly too coarse
in this case. On the other hand, a clustering with small inter-cluster conductance
is supposed to contain at least one cluster that has relatively strong connections
outside, i.e. the clustering is possibly too fine. To see that a clustering with
maximum intra-cluster conductance can be found in polynomial time, consider
first m = 0. Then α(C) = 0 for every non-trivial clustering C, since it contains
at least one cluster Cj with φ (G[Cj]) = 0. If m �= 0, consider an edge {u, v} ∈ E
and the clustering C with C1 = {u, v}, and |Ci| = 1 for i ≥ 2. Then α(C) = 1,
which is maximum.

So, intra-cluster conductance has some artifical behavior for clusterings with
many small clusters. This justifies the restriction to clusterings satisfying certain
additional constraints on the size or number of clusters. However, under these
constraints maximizing intra-cluster conductance becomes an NP-hard problem.
Finding a clustering with maximum inter-cluster conductance is NP-hard as well,
because it is at least as hard as finding a cut with minimum conductance.

3 Graph Clustering Algorithms

Two graph clustering algorithms that are assumed to perform well with respect
to the indices described in the previous section are outlined. The first one itera-
tively emphazises intra-cluster over inter-cluster connectivity and the second one
repeatedly refines an initial partition based on intra-cluster conductance. While
both essentially operate locally, we also propose another, more global method.
In all three cases, the asymptotic worst-case running time of the algorithms de-
pend on certain parameters given as input. However, notice that for meaningful
choices of these parameters, the time complexity of the new algorithm GMC is
better than for the other two.

All three algorithms employ the normalized adjacency matrix of G, i.e.,
M(G) = D(G)−1A(G) where A(G) is the adjacency matrix and D(G) the diag-
onal matrix of vertex degrees.

3.1 Markov Clustering (MCL)

The key intuition behind Markov Clustering (MCL) [4, p. 6] is that a “random
walk that visits a dense cluster will likely not leave the cluster until many of
its vertices have been visited.” Rather than actually simulating random walks,
MCL iteratively modifies a matrix of transition probabilities. Starting from M =

572 U. Brandes, M. Gaertler, and D. Wagner

M(G) (which corresponds to random walks of length at most one), the following
two operations are iteratively applied:

– expansion, in which M is taken to the power e ∈ N>1 thus simulating e steps
of a random walk with the current transition matrix (Algorithm 1, Step 1)

– inflation, in which M is re-normalized after taking every entry to its rth
power, r ∈ R

+. (Algoritm 1, Steps 2–4)

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities within
a row, while for r < 1, homogeneity is emphasized. The iteration is halted upon
reaching a recurrent state or a fixpoint. A recurrent state of period k ∈ N is a
matrix that is invariant under k expansions and inflations, and a fixpoint is a
recurrent state of period 1. It is argued that MCL is most likely to end up in a
fixpoint [4]. The clustering is induced by connected components of the graph un-
derlying the final matrix. Pseudo-code for MCL is given in Algorithm 1. Except
for the stop criterion, MCL is deterministic, and its complexity is dominated by
the expansion operation which essentially consists of matrix multiplication.

Algorithm 1: Markov Clustering (MCL)
Input: G = (V, E), expansion parameter e, inflation parameter r

M ←M(G)
while M is not fixpoint do

1 M ←Me

2 forall u ∈ V do

3 forall v ∈ V do Muv ←Mr
uv

4 forall v ∈ V do Muv ← Muv∑

w∈V
Muw

H ← graph induced by non-zero entries of M
C ← clustering induced by connected components of H

3.2 Iterative Conductance Cutting (ICC)

The basis of Iterative Conductance Cutting (ICC) [3] is to iteratively split clus-
ters using minimum conductance cuts. Finding a cut with minimum conductance
is NP–hard, therefore the following poly-logarithmic approximation algorithm
is used. Consider the vertex ordering implied by an eigenvector to the second
largest eigenvalue of M(G). Among all cuts that split this ordering into two
parts, one of minimum conductance is chosen. Splitting of a cluster ends when
the approximation value of the conductance exceeds an input threshold α∗ first.
Pseudo-code for ICC is given in Algorithm 2. Except for the eigenvector com-
putations, ICC is deterministic. While the overall running time depends on the
number of iterations, the running time of the conductance cut approximation is
dominated by the eigenvector computation which needs to be performed in each
iteration.

Experiments on Graph Clustering Algorithms 573

Algorithm 2: Iterative Conductance Cutting (ICC)
Input: G = (V, E), conductance threshold 0 < α∗ < 1
C ← {V }
while there is a C ∈ C with φ (G[C]) < α∗ do

x← eigenvector of M(G[C]) associated with second largest eigenvalue

S ←
{

S ⊂ C : max
v∈S
{xv} < min

w∈C\S
{xw}

}

C′ ← arg min
S∈S
{φ (S)}

C ← (C \ {C}) ∪ {C′, C \ C′}

3.3 Geometric MST Clustering (GMC)

Geometric MST Clustering (GMC), is a new graph clustering algorithm com-
bining spectral partitioning with a geometric clustering technique. A geometric
embedding of G is constructed from d distinct eigenvectors x1, . . . , xd of M(G)
associated with the largest eigenvalues less than 1. The edges of G are then
weighted by a distance function induced by the embedding, and a minimum
spanning tree (MST) of the weighted graph is determined. A MST T implies
a sequence of clusterings as follows: For a threshold value τ let F (T, τ) be the
forest induced by all edges of T with weight at most τ . For each threshold τ ,
the connected components of F (T, τ) induce a clustering. Note that there are
at most n − 1 thresholds resulting in different forests. Because of the following
nice property of the resulting clustering, we denote it with C(τ). The proof of
Lemma 1 is omitted. See [13].

Lemma 1. The clustering induced by the connected components of F (T, τ) is
independent of the particular MST T .

Among the C(τ) we choose one optimizing some measure of quality. Poten-
tial measures of quality are, e.g., the indices defined in Section 2, or combina-
tions thereof. This genericity allows to target different properties of a cluster-
ing. Pseudo-code for GMC is given in Algorithm 3. Except for the eigenvector
computations, GMC is deterministic. Note that, different from ICC, they form
a preprocessing step, with their number bounded by a (typically small) input
parameter. Assuming that the quality measure can be computed fast, the asymp-
totic time and space complexity of the main algorithm is dominated by the MST
computation. GMC combines two proven concepts from geometric clustering and
graph partitioning. The idea of using a MST that way has been considered be-
fore [14]. However, to our knowledge the MST decomposition was only used
for geometric data before, not for graphs. In our case, general graphs without
additional geometric information are considered. Instead, spectral graph theory
is used [15] to obtain a geometric embedding that already incorporates insight
about dense subgraphs. This induces a canonical distance on the edges which is
taken for the MST computation.

574 U. Brandes, M. Gaertler, and D. Wagner

Algorithm 3: Geometric MST Clustering (GMC)
Input: G = (V, E), embedding dimension d, clustering valuation quality

(1, λ1, . . . , λd)← d + 1 largest eigenvalues of M(G)
d′ ← max {i : 1 ≤ i ≤ d, λi > 0}
x(1), . . . , x(d′) ← eigenvectors of M(G) associated with λ1, . . . , λd′

forall e = (u, v) ∈ E do w(e)←
d′∑

i=1

∣∣∣x(i)
u − x(i)

v

∣∣∣
T ← MST of G with respect to w
C ← C(τ) for which quality(C(τ)) is maximum over all τ ∈ {w(e) : e ∈ T}

4 Experimental Evaluation

First we describe the general model used to generate appropriate instances for
the experimental evaluation. Then we present the experiments and discuss the
results of the evaluation.

4.1 Random Uniform Clustered Graphs

We use a random partition generator P(n, s, v) that determines a partition
(P1, . . . , Pk) of {1, . . . , n} with |Pi| being a normal random variable with ex-
pected value s and standard deviation s

v . Note that k depends on the choice
of n, s and v, and that the last element |Pk| of P(n, s, v) is possibly signifi-
cantly smaller than the others. Given a partition P(n, s, v) and probabilities pin
and pout, a uniformly random clustered graph (G, C) is generated by inserting
intra-cluster edges with probability pin and inter-cluster edges with probabil-
ity pout

1. For a clustered graph (G, C) generated that way, the expected values
of m, m(C) and m(C) can be determined. We obtain

E [m(C)] =
pout

2
(n(n − s)) and E [m(C)] =

pin

2
(n(s − 1)) ,

and accordingly for coverage and performance

E [coverage(C)] =
(s − 1)pin

(s − 1)pin + (n − s)pout

1 − E [performance(C)] =
(n − s)pout + (1 − pin)(s − 1)

n − 1
.

In the following, we can assume that for our randomly generated instances
the initial clustering has the expected behavior with respect to the indices con-
sidered.
1 In case a graph generated that way is not connected, additional edges combining the

components are added.

Experiments on Graph Clustering Algorithms 575

4.2 Technical Details of the Experiments and Implementation

For our experiments, randomly generated instances with the following values of
(n, s, v) respectively pin, pout are considered. We set v = 4 and choose s uniformly
at random from

{
n
� : 2 ≤ � ≤ √

n
}
. Experiments are performed for n = 100 and

n = 1000. On one hand, all combinations of probabilities pin and pout at a
distance of 0.05 are considered. On the other hand, for two different values pin =
0.4 and pin = 0.75, pout is chosen such that the ratio of m(C) and m(C) for the
initial clustering C is at most 0.5, 0.75 respectively 0.95.

The free parameters of the algorithms are set to e = 2 and r = 2 in MCL,
α∗ = 0.475 and α∗ = 0.25 in ICC, and dimension d = 2 in GMC. As objective
function quality in GMC, coverage, performance, intra-cluster conductance α,
inter-cluster conductance δ, as well as the geometric mean of coverage, perfor-
mance and δ is considered 2.

All experiments are repeated at least 30 times and until the maximal length
of the confidence intervals is not larger than 0.1 with high probability. The
implementation is written in C++ using the GNU compiler g++(2.95.3). We
used LEDA 4.33 and LAPACK++4. The experiments were performed on an Intel
Xeon with 1.2 (n = 100) and 2.4 (n = 1000) GHz on the Linux 2.4 platform.

4.3 Computational Results

We concentrate on the behavior of the algorithms with respect to running time,
the values for the initial clustering in contrast to the values obtained by the
algorithms for the indices under consideration, and the general behavior of the
algorithms with respect to the variants of random instances. In addition, we also
performed some experiments with grid-like graphs.

Running Time. The experimental study confirms the theoretical statements
in Section 3 about the asymptotic worst-case complexity of the algorithms. MCL
is significantly slower than ICC and GMC. Not surprisingly as the running time
of ICC depends on the number of splittings, ICC is faster for α∗ = 0.25 than for
α∗ = 0.475. Note that the coarseness of the clustering computed by ICC results
from the value of α∗.

For all choices of quality except intra-cluster conductance, GMC is the most
efficient algorithm. Note that the higher running time of GMC with quality set
to intra-cluster conductance is only due to the elaborate approximation algo-
rithm for the computation of the intra-cluster conductance value. In summary,
GMC with quality being the geometric mean of coverage, performance and inter-
cluster conductance, respectively quality being an appropriate combination of
those indices is the most efficient algorithm under comparison. See Figure 1.
2 Experiments considering the geometric mean of all four indices showed that incor-

poration of intra-cluster conductance did not yield significantly different results. We
therefore omit intra-cluster conductance because of efficiency reasons.

3 http://www.algorithmic-solutions.com
4 http://www.netlib.org/lapack/

http://www.algorithmic-solutions.com
http://www.netlib.org/lapack/

576 U. Brandes, M. Gaertler, and D. Wagner

a)

GMC ICC MCL

0.4
0.8
1.2
1.6

pin

pout

0.1

1.0 0.1

1.0

b)

(pin, pout) GMC ICC
(0.25, 0.25) 71 102
(0.50, 0.25) 72 103
(0.50, 0.50) 72 73
(0.75, 0.25) 74 101
(0.75, 0.50) 74 78
(0.75, 0.75) 74 73

Fig. 1. Running-time in seconds for n = 100 (a) and n = 1000 (b).

Indices for the Initial Clustering. Studying coverage, performance, intra-
and inter-cluster conductance of the initial clustering gives some useful insights
about these indices. Of course, for coverage and performance the highest values
are achieved for the combination of very high pin and very low pout. The perfor-
mance value is greater than the coverage value, and the slope of the performance
level curves remains constant while the slope of the coverage level curves de-
creases with increasing pin. This is because performance considers both, edges
inside and non-edges between clusters, while coverage measures only the fraction
of intra-cluster edges within all edges.

The fluctuations of the inter-cluster conductance values for higher values
of pout can be explained by the dependency of inter-cluster conductance δ(C)
from the cluster Ci ∈ C maximizing φ. This shows that inter-cluster conduc-
tance is very sensitive to the size of the cut induced by a single small cluster.
Due to the procedure how instances are generated for a fixed choice of n, the ini-
tial clustering often contains one significantly smaller cluster. For higher values
of pout, this cluster has a relatively dense connection to the rest of the graph. So,
in many cases it is just this cluster that induces the inter-cluster conductance
value.

In contrast to the other three indices, intra-cluster conductance shows a
completely different behavior with respect to the choices of pin and pout. Actually,
intra-cluster conductance does not depend on pout.

Comparing the Algorithms. A significant observation when comparing the
three algorithms with respect to the four indices regards their behavior for dense
graphs. All algorithms have a tendency to return a trivial clustering containing
only one cluster, even for combinations of pin and pout where pin is significantly
higher than pout. This suggests a modification of the algorithms to avoid trivial
clusterings. However, for ICC such a modification would be a significant devia-
tion from its intended procedure. The consequences of forcing ICC to split even if

Experiments on Graph Clustering Algorithms 577

the condition for splitting is violated are not clear at all. On the other hand, the
approximation guarantee for intra-cluster conductance is no longer maintained
if ICC is prevented from splitting even if the condition for splitting is satisfied.
For MCL it is not even clear how to incorporate the restriction to non-trivial
clusterings. In contrast, it is easy to modify GMC such that only non-trivial clus-
terings are computed. Just the maximum and the minimum threshold values τ
are ignored.

a)

MCL GMC init

0.
3

0.
5

0.
7

0.
9

perfomance, p_in=0.4

MCL GMC init

0.
4

0.
6

0.
8

perfomance, p_in=0.75

MCL GMC init

10
30

50

|C|, p_in=0.4

MCL GMC init

5
10

15

|C|, p_in=0.75

b)

ICC GMC init

0.
1

0.
3

0.
5

intra−cl. cond., p_in=0.4

ICC GMC init

0.
1

0.
3

0.
5

intra−cl. cond., p_in=0.75

ICC GMC init

5
15

25

|C|, p_in=0.4

ICC GMC init

5
10

15

|C|, p_in=0.75

Fig. 2. The diagrams show the distribution of performance respectively intra-cluster
conductance and the number of clusters for pin = 0.4 respectively pin = 0.75, and pout

such that at most one third of the edges are inter-cluster edges. The boxes are deter-
mined by the first and the third quantile and the internal line represents the median.
The shakers extend to 1.5 of the boxes’ length (interquartile distance) respectively the
extrema. The first two diagrams in 2a) compare the performance values for MCL, GMC
and the initial clustering, whereas the last two compare the number of clusters. The
first two diagrams in 2b) compare the intra-cluster conductance for MCL, GMC and
the initial clustering, whereas the last two compare the number of clusters.

Regarding the cluster indices, MCL does not explicitely target on any of
those. However, MCL implicitly targets on identifying loosely connected dense
subgraphs. It is argued in [4] that this is formalized by performance and that
MCL actually yields good results for performance. In Figure 2a), the behavior of
MCL and GMC are compared with respect to performance. The results suggest
that MCL indeed performs somewhat better than GMC. The performance values
for MCL are higher than for GMC and almost identical to the values of the initial
clustering. However, MCL has a tendency to produce more clusters than GMC
and actually also more than contained in the initial clustering. For instances
with high pin, the results for MCL almost coincide with the initial clustering

578 U. Brandes, M. Gaertler, and D. Wagner

but the variance is greater. ICC targets explicitely at intra-cluster conductance
and its behavior depends on the given α∗. Actually, ICC computes clusterings
with intra-cluster conductance α close to α∗. For α∗ = 0.475, ICC continues
the splitting quite long and computes a clustering with many small clusters.
In [3] it is argued that coverage should be considered together with intra-cluster
conductance. However, ICC compares unfavorable with respect to coverage. For
both choices of α∗, the variation of the performance values obtained by ICC is
comparable while the resulting values are better for α∗ = 0.475. This suggests
that besides intra-cluster conductance, ICC implicitly targets at performance
rather than at coverage. Comparing the performance of ICC (with α∗ = 0.475)
and GMC with respect to intra-cluster conductance suggests that ICC is much
superior to GMC. Actually, the values obtained by ICC are very similar to the
intra-cluster conductance values of the initial clustering. However, studying the
number of clusters generated shows that this is achived at the cost of generating
many small clusters. The number of clusters is even significantly bigger than in
the initial clustering. This suggests the conclusion that targeting at intra-cluster
conductance might lead to unintentional effects. See Figure 2b). Finally, Figure 3
confirms that ICC tends to generate clusterings with many clusters. In contrast,
GMC performs very well. It actually generates the ideal clustering.

(a) (b)

Fig. 3. In 3(a) the clustering determined by GMC for a grid-like graph is shown.
The clusters are shown by the different shapes of vertices. In contrast, 3(b) shows
the clustering determined by ICC. Inter-cluster edges are not omitted to visualize the
clusters.

5 Conclusion

The experimental study confirms the promising expectations about MCL, i.e. in
many cases MCL seems to perform well. However, MCL often generates a trivial
clustering. Moreover, MCL is very slow. The theoretical result on ICC is reflected
by the experimental study, i.e., ICC computes clusterings that are good with
respect to intra-cluster conductance. On the other hand, there is the suspect that

Experiments on Graph Clustering Algorithms 579

the index intra-cluster conductance does not measure the quality of a clustering
appropriately. Indeed, the experimental study shows that all four cluster indices
have weaknesses. Optimizing only with respect to one of the indices often leads
to unintended effects. Considering combinations of those indices is an obvious
attempt for further investigations. Moreover, refinement of the embedding used
by GMC offers additional potential. So far, only the embedding canonically
induced by the eigenvectors is incorporated. By choosing different weightings for
the distances in the different dimensions, the effect of the eigenvectors can be
controlled. Actually, because of its flexibility with respect to the usage of the
geometric clustering and the objective function considered, GMC is superior to
MCL and ICC. Finally, because of its small running time GMC is a promising
approach for clustering large graphs.

References

1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
2. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing

Surveys 31 (1999) 264–323
3. Kannan, R., Vampala, S., Vetta, A.: On Clustering — Good, Bad and Spectral.

In: Foundations of Computer Science 2000. (2000) 367–378
4. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University

of Utrecht (2000)
5. Harel, D., Koren, Y.: On clustering using random walks. Foundations of Software

Technology and Theoretical Computer Science 2245 (2001) 18–41
6. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. In-

formation Processing Letters 76 (2000) 175–181
7. Spielman, D.A., Teng, S.H.: Spectral partitioning works: Planar graphs and finite

element meshes. In: IEEE Symposium on Foundations of Computer Science. (1996)
96–105

8. Chung, F., Yau, S.T.: Eigenvalues, flows and separators of graphs. In: Proceeding
of the 29th Annual ACM Symposium on Theory of Computing. (1997) 749

9. Chung, F., Yau, S.T.: A near optimal algorithm for edge separators. In: Proceeding
of the 26th Annual ACM Symposium on Theory of Computing. (1994) 1–8

10. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation – Combinatorial optimization problems
and their approximability properties. Springer-Verlag (1999)

11. Wagner, D., Wagner, F.: Between Min Cut and Graph Bisection. In Borzyszkowski,
A.M., Sokolowski, S., eds.: Lecture Notes in Computer Science, Springer-Verlag
(1993) 744–750

12. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1 (1976) 237–267

13. Gaertler, M.: Clustering with spectral methods. Master’s thesis, Universität Kon-
stanz (2002)

14. Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers C-20 (1971) 68–86

15. Chung, F.R.K.: Spectral Graph Theory. Number 52 in Conference Board of the
Mathematical Sciences. American Mathematical Society (1994)

Dynamic Analysis of the Autonomous System Graph∗

Marco Gaertler
University of Karlsruhe, Faculty of Informatics

E-mail: gaertler@ira.uka.de

Maurizio Patrignani
Universit̀a di Roma Tre

E-mail: patrigna@dia.uniroma3.it

Abstract

In this paper we investigate to what extent the infor-
mation provided by BGP routing tables about the graph
of the Autonomous Systems (ASes) can be used to under-
stand dynamic phenomena occurring in the network. First,
we classify the time scales at which such an analysis can
be performed and, consequently, the kinds of phenomena
that could be anticipated. Second, we improve cutting-edge
technologies used to analyze the structure of the network,
most notably spectral methods for graph clustering, in or-
der to be able to analyze a whole sequence of consecu-
tive snapshots that capture the temporal evolution of the
network. Finally, we use such tools to analyze the data
collected by the Oregon RouteViews project [20] during
the last few years. We confirm stable properties of the AS
graph, find major trends and notice that events occurring
on a smaller time-frame, like worm-attacks, misconfigura-
tions, outages, DDoS attacks, etc. seem to have a very di-
verse degree of impact on the AS graph structure, which
suggests that these techniques could be used to distinguish
some of them.

1 Introduction

Several researchers have started studying the Internet
and its properties. In fact, such a rich and dynamic environ-
ment can be analyzed with respect to both the adjacency re-
lationships between the entities composing it and the com-
plex information flowing through its links and stored in
its nodes. Often, this field of research produces intrigu-
ing results. For example, self-similarity laws, which are
usually found when studying natural or biological phenom-

∗Work partially supported by European Commission - Fet Open
project COSIN - COevolution and Self-organisation In dynamical Net-
works - IST-2001-33555, by European Commission - Fet Open project
DELIS - Dynamically Evolving Large Scale Information Systems - Con-
tract no 001907, by “Progetto ALINWEB: Algoritmica per Internet e
per il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Inter-
esse Nazionale, and by “The Multichannel Adaptive Information Systems
(MAIS) Project”, MIUR Fondo per gli Investimenti della Ricerca di Base.

ena, were used to explain the apparently chaotic behavior
of traffic loads or the uneven distribution of the number of
adjacencies between the network nodes.

Recently, the general attention focused on the Au-
tonomous Systems (ASes), the independent organizations
whose cooperation guarantees the delivery of the packets
through the network. Since each AS exchanges traffic flows
with some neighbors (BGP peers), and local and remote ad-
jacencies can be gathered from the logs of the BGP conver-
sations between peers, plenty of current and historic data
is potentially available about the ASes, their peerings, and
the IP prefixes that are contained inside them. This kind
of information is used to produce reliable statistics on the
scalability of Internet technology and on the state of health
of global routing [17].

Usually, the AS graph is reconstructed by merging infor-
mation collected by a number of repositories managed by
private and public research organizations around the world.
Several studies have the purpose of analyzing the static
properties of the AS graph, including the kind of relation-
ships between its nodes, the distribution of their degrees, or
other graph-theoretic measures [14, 3, 10, 12, 25, 22].

In this paper we investigate to what extent the informa-
tion available from the BGP repositories can be used to un-
derstand the dynamic phenomena taking place in the Inter-
net. Since, to our knowledge, this is the first attempts to
systematically study dynamic properties of the AS graph,
we begin by classifying the timescales at which such ob-
servations can be carried out and, consequently, the kinds
of phenomena which may be anticipated, namely, stabil-
ity, major trends, and spot events. Second, we consider the
cutting-edge technologies described in the literature to an-
alyze the structure of the AS graph, most notably spectral
methods for graph clustering, and we advance and mod-
ify them in order to be able to analyze not only a single
snapshot, but a sequence of consecutive AS graphs cap-
turing the temporal evolution of the network. Finally, we
use such tools to analyze the data collected by the Oregon
RouteViews project [20] during the last few years, confirm-
ing known results and sensible hypotheses about the stable
properties of the Internet, measuring how the network is

1

titto
Appendix 7.2

evolving, and showing how this approach may turn out to
be a valuable tool for monitoring the network against some
types of malicious attacks. In fact, the various kinds of
transient phenomena affecting the Internet seem to have a
very different magnitude of impact on our measures, from
none at all (worm attacks, misconfigurations, etc.) to a sig-
nificant one (DDoS against DNS servers), offering a way
to distinguish them.

The paper is organized as follows: Section2 describes
the motivations that prompted our research. Section3 pro-
vides the necessary background and describes our method-
ological contribution to this domain of research. Section4
contains the results of our short- and long-term analysis of
the last few years of networks evolution and incidents. The
conclusions complete the paper.

2 Motivations

Data retrieved from BGP repositories is generally ana-
lyzed to determine the structure and properties of the net-
work of the Autonomous Systems at a specific time [13, 14,
3, 10, 12, 25]. However, a more sophisticated investigation
can only be accomplished by considering a whole sequence
of snapshots taken at subsequent moments. This is partic-
ularly true when the properties to be analyzed are related
to temporal aspects, like stability, growth, or the dynamics
of transitory phenomena. This kind of analysis can be per-
formed with different time granularity, addressing different
needs:

Long-term analysis Typically, the measures of the AS
graph are not constant, but heavily affected by noise,
rapid fluctuations, and sudden changes. A more stable
view, obtained by considering a sufficiently long time
window, would allow us to decide whether a partic-
ular snapshot actually fits into the ‘average’ network
behavior, to understand if a peculiar measure captures
a persistent property of the network or if it must be
ascribed to fortuitous fluctuations, and to spot slow
phenomena that take place over a period of months or
even of years. Combining acquired knowledge about
long-term temporal behavior allows to identify current
trends and helps to ensure that the network continues
to work properly.

Short-term analysis: The accessibility of detailed BGP
logs offers the opportunity to perform short-term anal-
ysis, that is to investigate changes occurring in a short
time period (and sometimes in a small neighborhood)
with the purpose of classifying them as noise, in-
cidents, outages, misconfigurations or malicious at-
tacks. Of course, an effective classification would al-
low us to detect anomalies that occurred in the past,
but the objective of this research may be much more

ambitious: devise techniques to spot anomalies as
they occur, by means of a preemptive monitoring of
the real-time and near-real-time behavior of the net-
work.

3 Methodology

In this section we give an overview of the terminology
we use, the data collection process, and our techniques.

3.1 Terminology

As usual, we build the graph of the Autonomous Sys-
tems starting from a setP of AS paths gathered from BGP
logs. Each AS path is associated with a prefix (an interval
of IP addresses) and consists of the sequence of the num-
bers of the Autonomous Systems traversed by the traffic
to be delivered to the associated prefix. The first number
in the sequence is calledvantage pointand is the source
that recorded the AS path, while the last number is thean-
nouncing AShosting the prefix IP numbers. In order to
preserve information about vantage points and their rela-
tive importance we enrich the AS graphG(V,E) with a
mappingφ : V × E −→ [0,∞[, where:

• each AS is represented by a node,

• there exists an undirected edge between two nodes, if
there exists a path inP in which the corresponding AS
numbers are consecutive, and

• the numberφ(v, e) equals the number of different
paths inP that havev as vantage point and containe.

This model allows us to keep track of the edge set seen by
each vantage point. AS graphs are very difficult to com-
pare, even if built from data sets taken at short intervals of
time. In fact, the very vantage points collecting data are of-
ten temporarily unavailable, inducing significant changes
in the observed portion of the network. Therefore, it is
sometimes desirable being able to consider the stable, com-
mon part of two subsequent AS graphs. We define thecom-
monly observed AS graphof two AS graphsG1 andG2

(with attached mappingsφ1 andφ2) as the graphGc where
an edge{u, v} is introduced if it has a value different from
zero for bothφ1(v, {u, v}) and φ2(v, {u, v}) for some
nodev. If needed, the value ofφc(v, {u, v}) is chosen to
be the minimum of the two values above. Isolated nodes
are removed fromGc.

3.2 Data Collection

Data on the actual routing can be collected by logging
the BGP routing tables. Unfortunately, some well-known
testbeds available on the web, e.g. [2], do not provide the

needed granularity with respect to time. In order to have
the needed width and density, we used data collected by
theOregon RouteViews Project([20]). This project was es-
pecially founded to grant real-time information about the
global routing system from the perspectives of several dif-
ferent backbones and locations around the Internet. Its data
is widely used by other network researchers and operators.
It started to operate on April 20th, 2001 and provides snap-
shots every two hours. The provided data is not purified and
contains misleading information, like repetitions of paths,
loops inside paths, or prepending of ASes. Further, other
issues can alter data, like truncated data files, time-outs,
lost connections, or connections closed too early. We there-
fore filtered data according to the following simple rules:

1. discard any data set that is truncated or shows signs of
technical problems, like the IP space is too limited,

2. enumerate all paths only once, and

3. delete loops and prepending ASes.

3.3 Observed Indices

A common approach is to define or use indices that
provide a succinct measure of the properties of the graph
which are to be monitored. We consider the number of
nodes, edges, observing peers and paths. The first two
are the classical graph theoretic measures and give a rough
measure of the size and the density of the network. The
other two are specific to this domain. They are needed
to reflect the various influences on the extracted network
view. So far, the total number of BGP-peerings between
ASes currently present in the Internet is unknown. It is
only known that a larger set of vantage points often implies
a larger set of paths. More paths often also result in more
edges. Unfortunately, the peer and path sets are affected
by various fluctuations themselves. Such changes can be
roughly classified as: Problems due to the collecting soft-
ware’s faults, connectivity problems that affected the col-
lection process, and actual changes in the routing graph.
The first two may lead to false conclusions and therefore
need to be removed. Most of these events can be elim-
inated by an online cleaning process. Other indices that
capture structural properties are the maximum core level
and the size of the induced core graph (both will be intro-
duced in Section3.4.1) . Besides this static indices, we
also considered the similarity of consecutive snapshots, by
considering the commonly observed AS graph and its size.

3.4 Abstract Views

In order to cope with the amount of data, we had to com-
pute a very concise description. We used different kinds

of simplification and clustering techniques, which offer the
opportunity to get highlevel views of the network structure
and behavior.

3.4.1 Cleaning the Graph

When dealing with large amounts of data, a usual tech-
nique is filtering out irrelevant information. Several au-
thors attempted to investigate relevance concepts for the
AS graph. The most common is the degree of a node,
used for example by Govindan and Reddy [16], Gao [14]
and Tauro et. al. [25]. We used the concept of coreness
which is strictly related to the degree of nodes and was in-
troduced in [23] and [5]. Thek-coreof a graph is defined as
the unique subgraph obtained by recursively removing all
nodes of a degree less thank. A node hascorenessvalue`,
if it belongs to thè -core but not to the(` + 1)-core. Core-
ness can be used to filter out peripheral ASes. A suitable
value ofk can be chosen, for example, based on the num-
ber of the remaining ASes. There are no evidences that the
scale-free property of the AS graphs might influence this
coreness-based cleaning. The coreness concept can be used
to generate a reduced model of the graph. We define the
core graphGcore(H) = (V ′, E′) of a graphH = (V,E) as
follows. LetEi,j be the subset of all edges (inH) incident
to nodes of corenessi andj. In Gcore(H) there is a node for
each distinct coreness value, and two nodesi andj are con-
nected, ifEi,j is not empty. An edge-weighting functionw
of H can be transformed into an edge weightw′ of Gcore

by settingw′(i, j) to the total weight of all edges inEi,j .
The AS graph has a very special structure, i.e. it is the re-

sult of merging paths. This composition reflects fundamen-
tal properties and thus a good filtering technique should re-
spect the inherent path properties. The quality of a filtering
technique could be measured by the number of AS paths
that remain connected in the reduced graph. For thek-core
filtering we defineµk(i) to be the fraction of paths that
havei connected components in thek-core. This number
depends on the input parameterk. In order to avoid such a
dependency and increase the insight into its compatibility,
we will consider lower bounds forµk(1). Such a bound
is given by the fraction of paths that remain connected in
all k-cores and is denoted byµ(1). On the other hand, we
also like to judge the degree of fragmentation. Therefore
we count the fraction of paths that would be cut intoi com-
ponents in ak-core for some valuek andi > 1. This value,
which is denoted byµ(i), gives an upper bound onµk(i).
An experimental validation on the coreness is presented in
Section4.1.1.

3.4.2 Clustering

Clustering is a well-known technique to explore the inner
structure of relationships and the roles of the participating

entities. It was already used for this purpose in research
areas such as social networks [6, 11], data mining [18],
and VLSI [4]. Gkantsidis et. al. [15] performed spectral
analysis and clustering on the AS graph. As part of their
preprocessing they delete all nodes of degree one or two,
which is equivalent to consider the 3-core. Other oper-
ations involved normalization or third-party information.
Their main analysis is based on spectral information and
involves eigenvectors. In this special scenario eigenvectors
are mappings from the node set to the real numbers and
proximity in these values often corresponds to dense sub-
graphs. They used a common heuristic to partition, which
is based on selecting connected subgraphs that share the
same sign in a specific eigenvector. By suitably choosing a
subset of the eigenvectors, they were able to produce clus-
ters characterized by strong geographic or business rela-
tionships. Good eigenvectors for this task are among those
that correspond to the largest eigenvalues.

We applied a clustering method, called Geometric MST
Clustering (GMC), that embodies the same intuition of the
proximity provided by the eigenvectors and that was intro-
duced in [8]. Although it involves more complex algorith-
mic steps, it can be fully automated, it explores the eigen-
vector structure to a larger extent, and requires only the
graph (and optionally an edge weighting). The general idea
is to interpret several eigenvectors, that are associated with
the largest eigenvalues of the normalized adjacency matrix,
as embedding for the graph and search within this geomet-
ric object for dense parts. The search itself is performed by
a Minimum-Spanning-Tree (MST) computation. By con-
sidering only the span of tree edges that have (geometric)
distance smaller than a given threshold, the MST represents
a hierarchy of clusterings. Evaluating this hierarchy with
different clustering indices allows to chose a good cluster-
ing as well as to incorporate several user-defined aspects.

The AS graph is quite inhomogeneous with respect to
the density. The major part of the nodes are only loosely
connected ([24]). In order to overcome this property and
concentrate on relevant ASes, we choose the minimumk-
core that has at most 200 elements. This choice is based on
a rough estimate on the number of important ASes and ex-
periments. As objective function for the clustering we used
quality(C) = 4

√
coverage(C) · performance(C)3, where

coverage is the ratio of numbers of edges within all clus-
ters and the total number of edges; andperformance is the
number of all adjacent node pairs lying in the same cluster
plus the number of all non-adjacent node pairs lying in a
different cluster divided by the total number of node pairs.
The coverage score is an indicator for the global density
of a clustering. Whileperformance rates the clustering
with respect to the disjoint-clique model. We chose this
objective function to focus more on structural issues than
on pure density. Again experiments verified the usability

of this objective function. Some properties of the resulting
clusterings are presented in Section4.1.2.

The integration of dynamic aspects, like the clustering
of a sequence of graphs, entails lots of problems. First
of all, the result format is not clear. Is a single partition
of the node set still required or for each point of time?
What is the importance ratio between edge set and time
horizon? Second, how can static algorithms be adapted?
And finally what should be the relation between static and
dynamic clusterings? In the few instances such problems
already arose, the following two methods were used to re-
duce the dynamic case to the static one, thus always cal-
culating a single partition of the node set. The first one
collapsed all graphs into one. Edges are present if their fre-
quency is large enough. This corresponds to consider the
’average’ graph over time and cluster it. The second ap-
proach clusters each graph individually and combines the
results afterwards to a single partition. In this case, the
’average’ clustering is output. Both versions have their dis-
advantages; the major problem is to find suitable thresholds
for the combination step. We will use the second approach
because it allows us to observe node movement more eas-
ily. However, statistical disturbances are the major source
of false conclusions for both methods, especially when the
given time frame is very short.

4 Experiments and Results

Basic properties and the quality of our auxiliary reduc-
tion techniques are presented first. This is necessary to in-
crease the understanding of the impact of these utilities and
to avoid wrong conclusions. It is followed by the major el-
ements of dynamic analysis – baselines, trends and anoma-
lies.

4.1 Evaluation of Reduction Techniques

The reduction techniques consist of cleaning and fil-
tering on the one side and clustering on the other. The
major difference is that the first keeps atomic elements –
nodes still represent single ASes – while clustering pro-
duces many non-singleton groups. In this first part we
present some considerations that justify the use of the re-
duction techniques in the later sections.

4.1.1 Validation of Cleaning and Filtering

It can be observed thatµ(1) always exceeded0.9, thus
more than 90% of all AS paths remained connected in ev-
eryk-core. Furthermore, onlyµ(2) andµ(3), which are the
upper bounds on the fraction of paths that are split into two
and three components, have values that are significantly
larger than zero. Figure1 shows the temporal evolution.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09

fra
ct

io
n

of
 p

at
hs

 re
m

ai
ni

ng
 c

on
ne

ct
ed

time

(a) Lower boundµ(1)

 0.0001

 0.001

 0.01

 0.1

 1

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09

fra
ct

io
n

of
 p

at
hs

 re
m

ai
ni

ng
 c

on
ne

ct
ed

time

PSfrag replacements

µ(1) µ(2) µ(3)

(b) Temporal evolution ofµ(i) for i = 1, 2, 3

Figure 1. Fraction of paths that are guaran-
teed to be connected and are split into two
or three components over time

These observations are good indicators that the core struc-
ture of the graph is compatible with the path structure in
general and therefore may be used for filtering purposes
without altering the graph structure too much.

4.1.2 Significance of Clustering

We selected several random snapshots and clustered them
individually. The observed features were averaged, used
as hypotheses for common properties, and verified against
other randomly selected samples. Thus, we found the fol-
lowing characteristics:

• two to six clusters have more than four elements; these
clusters cover together more than 70% of all elements

• the remaining clusters often contained only one ele-
ment

• clusters reflect geographical issues, i.e. the major
clusters separated US, Europe and Asia

The Cooperative Association for Internet Data Analysis
(CAIDA) provides limited geographic positions for several
ASes. These may include coordinates or affiliation to cer-
tain states. The relationship between clusters and this data
is shown in Figure2 and Table1. Thus, clusters reflect

(a) United States of America

(b) Europe

Figure 2. Geographical positions of some
ASes. Different shapes represent different
clusters, i.e. crosses for cluster 1 (33/86 po-
sitions available), squares for cluster 2 (10/17
positions available), and sharps for cluster 3
(4/6 positions available).

actual coherences of ASes as well as geographical issues.
Therefore it might be useful to detect and classify changes
in the network structure.

Clusters
Country 1. 2. 3. remaining
US 75 3 1 22
Europe 3 10 4 24
Africa 2 1 1 2
Asia 5 1 - 2
unknown 1 2 - 2

Table 1. Distribution of countries on clusters

4.2 Baselines and Trends

Determining the standard undisturbed behavior is one
fundamental task of dynamic analysis. As an initial step
we investigate the evolution of static indices. The temporal
evolution is shown in Figure3(a) and3(b). The number
of nodes and edges seem to be locally stable over time.
In order to verify this observation, we calculated the stan-
dard deviations of time frames of different length. Both
indices seem to be non-constant, therefore a larger time
window results in a larger deviation. In Figure4 the time
frame length is plotted versus the average standard devia-
tion (ASD). As expected the ASDs are isotonic in the frame
length, furthermore their increases can be expressed by lin-
ear function, thus verifying the local stability. The slope
for the number of edges is three times larger than for the
number of nodes. This can be explained by the fact, that
edges are subject to more consistent changes and depend
on the number of paths which in turn depend on the num-
ber of participating peers. For example, number of edges
and paths as well as number of paths and peers are highly
correlated (≈ 0.977 and≈ 0.897, respectively). In this spe-
cial scenario, we can utilize the path structure to normalize
the views by using the commonly observed AS graph of
two consecutive AS graphs. The size of the node set and
the edge set will be denoted by|V ′| and|E′|. This enables
us to decide whether a change in the number of nodes (or
edges) is only due to a change in the vantage points or not.
Figure5(a)displays the evolution of the number of nodes
and edges for the AS graphs and the commonly observed
AS graphs. Utilizing the detailed view of Figure5(b) we
conclude that the first two increases (2am and 10am) of
peers led to a larger view (new edges were added) while
the third increase (2pm) did not effect it (only redundant
information was added). However, we have to be careful
judging decreases, since the absence of vantage points can
have many reasons. Some of these causes are independent
of the (global) network status, like internal reorganization
or connection failures during the collection process.

Another approach to judge the undisturbed behavior of
the network involves a more structural and high-level view:
the core graph (Section3.4.1). We extend the concept by

 10000

 15000

 20000

 25000

 30000

 35000

 40000

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09
time

|V|
|E|

(a) Number of nodes and edges

300.000

400.000

500.000

600.000

700.000

800.000

900.000

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09
time

#paths
10.000 * #peers

(b) Number of AS paths and peers

Figure 3. Graph theoretic and domain spe-
cific measures. The x-axis represents time,
starting in May 2001 till September 2003.

adding a node-weighting function that represents the frac-
tion of nodes (in the original graph) having a certain core-
ness. We observed that most nodes have a very low core-
ness score (one, two, or three). When edges are uniformly
weighted, there are two different types of edges with large
weight: edges that connect cores with a small index and
edges that connect low-index cores with high-index cores
(transition edges). In the case where edges are weighted
according to the number of paths that use them, transi-
tion edges and edges connecting cores with large index are
present. Figure6 shows such a core graph with the two
different edge weightings. This reflects the general intu-
ition, that many links are needed to connect the customer to
their provider and that the links that occur more frequently
in paths are links to or within the ’backbone’ and not in-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 7 14 30 60

av
er

ag
e

st
an

da
rd

 d
ev

ia
tio

n

size of time frame (days)

|V| |E|

Figure 4. Local stability of number of nodes
and edges. The time frame length is plotted
versus the average standard deviations.

side the periphery. This description is stable with respect
to time. In Figure7 the relative distribution of coreness
values are drawn; from the diagram it is evident that frac-
tions of nodes with the lowest and the highest coreness are
stable.

Long-term Patterns

Using these observed phenomena, we recognized two ma-
jor patterns. The first one is the linear growth of the num-
ber of nodes and edges. Although it seems to be a trivial
observation (Figure3(a)), it is not at all expected. Many re-
searchers have reported an exponential growth in the time
frame of 1997 till 2000. Because both indices grow in a
linear fashion, the ratio of observed edges to the total num-
ber of possible edges decreases. The second pattern is the
distribution of growth. ASes are separated according to
their importance in the core graph. By inspecting the evo-
lution of the core graph, we observed that most nodes enter
the graph with a very low coreness score, while edges (in
the path-weighted version) connect low-score nodes with
high-score nodes or only high-score nodes with each other.
This verifies the general intuition, that more customers than
(high-level) providers enter the system and that more con-
nections are established to connect the small providers with
the backbone or enlarge the backbone.

4.3 Short-Term Analysis – Anomalies

In this section we describe the results of short-term anal-
ysis. Namely, we measure the impact on our measurements
of dramatic short-lived events that occurred in the network
in the last few years. This section also offers the oppor-
tunity to test the effectiveness of the techniques described
in Section3.4.2to overcome the difficulties implied by the

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09
time

|V|
|E|
|V’|
|E’|

(a) Evolution over time of the different indices

 21500

 22000

 22500

 23000

 23500

 24000

 24500

0 6 12 18 0 6 12 18 0 6 12 18 0
time

|E|
700*#peers

|E’|

(b) Detailed view (2001 May from 24th till 27th).

Figure 5. Sizes of AS graphs and commonly
observed AS graphs.

use of the clustering approach in a dynamic scenario on
real-world data. As already mentioned, events that last very
short are problematic. In these cases a higher granularity of
the data would be needed for better observations, but is of-
ten absent. However, our measurements suggest that events
occurring on a small time-window may be effectively clas-
sified with our clustered analysis. In particular, we show
in this section that some kind of sporadic phenomena, like
worm attacks or misconfigurations, even if they may have
a dramatic effect from the user’s point of view, do not seem
to have a measurable impact on the AS graph structure. On
the other hand, some very specific events, notably DDoS
attacks against DNS root servers, happen to cause a signifi-
cant change of the structure of the clusters. Thus, this kind
of analysis may be a promising tool, to be used as a litmus-
paper to test if one of these specific events is occurring in

11

17

6
5

14

9

3

1

16

2

8

15

10

12

4

7

13

(a) Uniform edge weight

11

17

6
5

14

9

3

1

16

2

8

15

10

12

4

7

13

(b) Edge weight according to used paths

Figure 6. Core graph of AS graph (May 1st,
2001 0:00). The area of the nodes is pro-
portional to the number of nodes having that
coreness score. The thickness of the edges
is proportional to their weight. (Note, that
edges with very little weight are omitted.)

the network.

BGP storm due to worm attack. On July 19th 2001, the
Code Red II worm was spreading on the Internet ex-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

05 07 09 11 01 03 05 07 09 11 01 03 05 07 09

fra
ct

io
n

of
 n

od
es

time

1-core 2-core 3-core 4-core

Figure 7. Distribution of coreness values (rel-
ative to the number of nodes in the graph)

ploiting the indexing service vulnerability in the Microsoft
Internet Information Server MS-IIS ([9]). Although an ex-
ponentially growth in the advertisement rate was observed
by [7], we could not assess a significant change in the num-
ber of nodes and edges. In fact, Figure8 shows that the
number of nodes and edges is quite stable while the drop in
the number of peers accounts for the loss of paths. These
missing peers - AS715 and AS19092 - usually contribute
with more than 15,000 paths each. Using the clustering
technique, we could not spot any significant changes. In
fact, about 75% of all nodes were either perfectly stable
or switched between two clusters, the other nodes blinked
in and out of our observed view or could not be associ-
ated to one cluster. The number and sizes of the clusters
were stable. A similar behavior could be observed when
on September 18th 2001, a extremely virulent worm, called
W32.NIMDA, spread throughout the Internet using multi-
ple methods to inflect both Windows servers and user ma-
chines ([27]).

Shutdown of KPNQwest/Ebone and RIPE NCC Test
Traffic measures a 50% increase of alarms. In July
2002, KPNQwest, one of Europe’s largest Internet back-
bone provider had a time-out. The company went offline
on the 3rd and returned on the 25th ([19]). At the be-
ginning of this event, the RIPE NCC measures a 50% in-
crease of alarms on their TTMs (Test Traffic Measurement
Boxes, [26]). We observed a drop in the number of peers,
paths and edges. While the first two lasted only a few days,
the last one was present during the whole period. Figure9
shows this evolution. The clustering is rather stable when
we considered the three time periods (before, during and
after the shutdown) separately. However, we could observe
temporal migrations (small subsets formed new clusters or
were swallowed up), new ASes ’entered’ the system and

 23000

 23200

 23400

 23600

 23800

 24000

 24200

 24400

17 18 19 20

2*|V| |E| 2*|V’| 2*|E’|

(a) Number of nodes and edges

 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

17 18 19 20

10.000*#peers #paths

(b) Number of peers and paths

Figure 8. Evolution around July 19th 2001

old ASes ’left’ during the transitions. The few drops in the
number of edges of the commonly observed AS graph (see
Figure9(a)) are probably due to technical issues and do not
reflect changes.

Misconfiguration in UUNet. UUNet (WorldCom)
stopped talking to the rest of the Internet on October 3rd
2002 between 12am and 9pm (UTC), due to misconfig-
uration in some of their routers. This caused increases
of respond times, delays, and packet losses ([21]). It
affected many other ASes, because UUNet carried half of
the world’s Internet traffic. Although the number of edges
seems to be affected, we could not observe a significant
change (see Figure10).

DDoS Attacks against 13 Internet Root Servers. On
October 21st 2002, a series of well-coordinated, simulta-

 26500

 27000

 27500

 28000

 28500

 29000

 29500

 30000

 30500

 31000

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31

2*|V|
|E|

.0425*#paths
|E’|

(a) Number of nodes, edges and paths

 0

 20

 40

 60

 80

 100

 120

 140

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31

largest
2nd largest

3rd largest
4th largest

(b) Sizes of clusters (sorted according to size)

Figure 9. Evolution during July 2002

neous DDoS attacks were launched from various points
around the world, against each of the 13 Root Servers that
are used for the Internet’s Domain Name System (DNS)
([21]). The attack, which disabled nine of the 13 Root
Servers, started at 8:45pm (UTC) and lasted approximately
two hours. We could only partially observe the event,
becauseOregon Routeviewhad a 6-hours blackout, due
to connection time-outs, starting at October 22nd 2am
(UTC) and the peer AS701 disappeared, causing a loss of
≈ 17, 600 paths earlier on the 21st (8am UTC). It never re-
turned as a vantage point. Thus, we can only analyze the
structure of the network before and during the attack, but
not immediately afterwards. Also, the loss of paths limits
the viewpoint. Similar to the previous worm attacks, the
number of nodes and edges is stable (see Figure11). The
clusterings are very stable, except for the point in time of
21st 8pm. In that instant a kind of splitting occurred. A
subset of 29 elements and a single node emerged from the

 27800

 28000

 28200

 28400

 28600

 28800

 29000

01 02 03 04 05 06

2*|V| |E| 2*|V’| |E’|

(a) Number of nodes and edges

Figure 10. Evolution around October 3rd 2002

largest cluster and built their own clusters. For simplicity
we denote the remaining part of the largest cluster by 1’
and the other two with 1” and 1”’ respectively, according
to their size. Table2 contains the geographic distribution
of the ASes located in those clusters. Most of the elements
in 1” and 1”’ were perfectly stable while belonging to clus-
ter 1 during the other time frames. The four Asian ASes –
AS2518, AS4143, AS4728, and AS4766 – are kind of ex-
change servers. The cluster 1” contains also several well-
know ASes like AT&T, Cable and Wireless, former Ge-
nuity, Globalcrossing, Sprintlink, UUnet, Verio, Microsoft
(three times) and Google. A more fascinating fact is that
in each cluster 1’ and 1” an unaffected or a less affected
DNS root server (AS297 and AS3557) is present. This is a
strong indicator that the clustering was affected. However,
the degree of interaction remains open. The current gran-
ularity is not high enough for a further and more detailed
analysis.

countries
clusters

1 1’ 1” 1”’

US 74 48 26 -
Europe 9 9 - -

Asia 11 7 3 1
Africa 1 1 - -

Australia 1 1 - -
unknown 1 1 - -

Table 2. The distribution of countries of the
cluster and its segmentation.

 28000

 28500

 29000

 29500

 30000

 30500

19 20 21 22 23 24 25

2*|V|
|E|

.04125 *#paths

2*|V’|
|E’|

Figure 11. Evolution around October 21st
2002

Sapphire worm attack. In the morning of 25th Jan-
uary 2003, theSapphire worm (also known asSQL
slammer) was released on the Internet. Exploiting a
vulnerability in Microsoft SQL server it multiplied itself
rapidly and soon spread out over networks worldwide.
From news headlines and activity on mailing lists it was
clear the attack had an impact on the Internet’s perfor-
mance. Similar to theDDoS Attackour data sourceOre-
gon Routeviewhad a blackout from 8am till 12am due to
connection timeouts. Also two large peers - AS7660 and
AS8297 - were absent on 26th. Each contributed with more
than 16,000 paths. Thus our view point is very limited and
can hardly be used to distinguish between worm attack and
peer loss.

DDoS Attack on the RIPE NCC. Starting from 2pm
(UTC) February 27th, 2003, the RIPE NCC network suf-
fered a large DDoS attack (a distributed ICMP echo attack).
Their network structure was affected not only ICMP traf-
fic. Network condition returned back to normal the same
day at 4:30pm UTC. Shortly before (2am till 2pm) the
peer AS5459 did not contribute, causing a loss of≈ 7, 100
paths. Nothing unusual could be observed.

Blackouts. During August and September 2003, several
blackouts happened in different geographic regions. On
August 14th, around 6pm (UTC) started the cascading
chain of events that lead to a gigantic blackout in the north-
eastern part of America and Canada (refer to [1] for de-
tails). A 40-minute blackout took place in London on
August 28th (around 6 pm). The last one struck parts of
France, Italy and Switzerland on September 28th. It started
around 2:30 am and power returned during the afternoon.
The event in London could not be observed, since it was
too short. The other two exhibited a similar pattern: a

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 36000

 38000

14 15 16 17 18 19

2*|V|
|E|

.04*#paths
2*|V’|

|E’|

(a) US and Canada

 31500

 32000

 32500

 33000

 33500

 34000

 34500

 35000

 35500

 36000

 36500

28 29 30

2*|V|
|E|

.04*#paths
2*|V’|

|E’|

(b) France, Italy and Switzerland

Figure 12. Evolution of different blackouts

large drop in the number of paths occurred at the start of
the event. This drop caused also a drop in the static in-
dices (number of nodes and number of edges). The recov-
ery phase was very short and the indices quickly got back
to their old scores. The drops in the number of nodes and
edges of the commonly observed AS graph (Figure12(a))
is not due to the blackout itself. They are results of the
disruption in the collection process. The reduced data set
was relatively stable. Most node were present more than
80% of the time. Only a small set (≈ 20 nodes) appeared
only once or twice. The clustering itself is relatively stable.
Figure13 shows the temporal development of the sizes of
the clusters. Smaller migrations, splittings or merging phe-
nomena could be observed. Although there is no clear pat-
tern or regularity apparent, it is a fact that these changes
occurred more frequently during the recovery phase, thus
giving a good indicator that clustering reflects aspects of
the event. Similar observations could be made during the

 0

 20

 40

 60

 80

 100

 120

 140

 160

14 15 16 17 18 19

largest
2nd largest

3rd largest
4th largest

Figure 13. Sizes of the different clusters dur-
ing the blackout in the US and Canada

blackout in Europe. However, the impact on the structure
was not comparable with respect to size and the recovery
time much shorter.

5 Conclusions

Clustering and reduction techniques are well-known and
widely-used approaches for analyzing large amounts of
data. We adapted these tools to the domain of the dy-
namic analysis of the Internet graph at the AS level. Sev-
eral experiments were performed to deepen the knowledge
of short- and long-term phenomena. The first target was
to describe the baseline behavior of the network in the ab-
sence of pathologic phenomena. Although the analysis was
relatively plain, we could verify several intuitional proper-
ties. A second effort went in the direction of measuring the
impact of short-lived events, such as viruses, misconfigura-
tions and blackouts. We found, that viruses and worms had
no measurable effect on the network structure, even if Inter-
net services might have been disrupted. In contrast, black-
outs and DDoS showed measurable consequences. Obvi-
ously, the analysis showed indisputable and precise evi-
dences of blackouts and power outages, but the symptoms
registered for DDoS are perhaps more promising from a
practical point of view.

Although hampered by lots of technical problems, as
the continuous changing of the available vantage points
or the uncertain identification of the ever-changing clus-
ters through time, we think that the dynamic analysis of the
AS-graph is a promising field of research that could have
many useful outcomes in the future. In this paper we made
a first step towards the definition of a practical methodical
approach to this intriguing problem.

References

[1] A timeline of the 2003 blackout. http:
//www.cnn.com/2003/US/08/16/
blackout.chron.ap/index.html .

[2] Characterizing the internet hierarchy from mul-
tiple vantage points. http://www.cs.
berkeley.edu/˜sagarwal/research/
BGP-hierarchy/ .

[3] S. Agarwal, L. Subramanian, J. Rexford, and R. Katz.
Characterizing the internet hierarchy from multiple
vantage points. InProceedings of IEEE Infocom
2002, 2002.

[4] Charles J. Alpert and Andrew B. Kahng. Recent di-
rections in netlist partitioning: A survey.Integration:
The VLSI Journal, 19:1–81, 1995.

[5] V. Batagelj and M. Zaveršnik. Generalized cores.
Preprint 799, Universtiy of Ljibljana, 2002.

[6] Vladimir Batagelj, Anuska Ferligoj, and Patrick Dor-
eian. Generalized blockmodeling. Informatica
(Slovenia), 42(4), 1999.

[7] Code Red II and Nimda Worms and BGP Instabil-
ity. http://www.renesys.com/projects/
bgp_instability .

[8] Ulrik Brandes, Marco Gaertler, and Dorothea Wag-
ner. Experiments on graph clustering algorithms. In
Proceedings of the 11th Annual European Symposium
on Algorithms (ESA’03), Lecture Notes in Computer
Science. Springer-Verlag, 2003. To appear.

[9] The Code Red Worm.http://www.ciac.org/
ciac/bulletins/l-117.shtml .

[10] G. Di Battista, M. Patrignani, and M. Pizzonia. Com-
puting the types of the relationships between au-
tonomous systems. InIEEE INFOCOM 2003, 2003.

[11] Patrick Doreian, Vladimir Batagelj, and Anuska
Ferligoj. Symmetric-acyclic decompositions of net-
works. Journal of Classification, 17(1):3–28, 2000.

[12] T. Erlebach, A. Hall, and T. Schank. Classifying
customer-provider relationships in the internet. In
Proceedings of the IASTED International Conference
on Communications and Computer Networks, pages
538–545, 2002.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, pages 251–262, 1999.

[14] Lixin Gao. On inferring autonomous system relation-
ships in the internet.IEEE/ACM Transactions on Net-
working, 9(6):733–745, 2001.

[15] Christos Gkantsidi, Milena Mihail, and Ellen Zegura.
Spectral analysis of internet topologies. InIEEE In-
focom 2003, 2003.

[16] R Govindan and R. Reddy. An analysis of internet
inter-domain topology and route stability. InIEEE
INFOCOM 1997, 1997.

[17] Geoff Huston. BGP table statistics.http://bgp.
potaroo.net .

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: A review. ACM Computing Surveys (CSUR),
31(3):264–323, 1999.

[19] KPNQwest limps back after shutdown.
http://news.com.com/2104-1033_
3-946262.html .

[20] David Meyer. University of oregon route views
project.http://www.routeviews.org/ .

[21] The internet outage and attacks of october
2002. http://www.isoc-chicago.org/
internetoutage.pdf .

[22] M. Rimondini, M. Pizzonia, G. Di Battista, and
M. Patrignani. Algorithms for the inference of the
commercial relationships between autonomous sys-
tems: Results analysis and model validation. submit-
ted to this workshop, 2004.

[23] S. B. Seidman. Network structure and minimum de-
gree.Social Networks, 5(5):269–287, 1983.

[24] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Falout-
sos. Power laws and the as-level internet topology. In
IEEE/ACM Transactions on Networking (TON), vol-
ume 11, pages 514–524. ACM Press, 2003.

[25] S. Tauro, C. Plamer, G. Siganos, and M. Faloutsos. A
simple conceptual model for the internet topology. In
IEEE Globalcom 2001, volume 3, pages 1667–1671,
2001.

[26] Test Traffic Analysis Update. http:
//www.ripe.net/ripe/meetings/
archive/ripe-43/presentations/
ripe43-tt-analysis/ .

[27] The W32.nimda Worm. http://www.ciac.
org/ciac/bulletins/l-144.shtml .

http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.renesys.com/projects/bgp_instability
http://www.renesys.com/projects/bgp_instability
http://www.ciac.org/ciac/bulletins/l-117.shtml
http://www.ciac.org/ciac/bulletins/l-117.shtml
http://bgp.potaroo.net
http://bgp.potaroo.net
http://news.com.com/2104-1033_3-946262.html
http://news.com.com/2104-1033_3-946262.html
http://www.routeviews.org/
http://www.isoc-chicago.org/internetoutage.pdf
http://www.isoc-chicago.org/internetoutage.pdf
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ciac.org/ciac/bulletins/l-144.shtml
http://www.ciac.org/ciac/bulletins/l-144.shtml

Classifying Customer-Provider Relationships in the Internet∗

Thomas Erlebach, Alexander Hall†

Computer Engineering and Networks Lab
ETH Zürich

CH-8092 Zürich, Switzerland
{erlebach|hall}@tik.ee.ethz.ch

Thomas Schank

Department of Computer & Information Science
Universität Konstanz

D-78457 Konstanz, Germany

schank@fmi.uni-konstanz.de

July 2002

Abstract

The problem of inferring customer-provider relationships in the autonomous system topol-
ogy of the Internet leads to the following optimization problem: given an undirected graph G
and a set P of paths in G, orient the edges of G such that as many paths as possible are valid,
meaning that they do not contain an internal node with both incident edges on the path di-
rected away from that node. The complexity of this problem was left open by Subramanian et
al. (“Characterizing the Internet hierarchy from multiple vantage points,” INFOCOM 2002).
We show that finding an orientation that makes all paths valid (if such an orientation exists)
can be done in linear time and that the maximization version of the problem is NP-hard and
cannot be approximated within 1/n1−ε for n paths unless NP=co-RP . We present constant-
factor approximation algorithms for the case where the paths have bounded length and prove
that the problem remains APX -hard in this case. Finally, we report experimental results
demonstrating that the approximation algorithm yields very good solutions on real data sets.

1 Introduction

The Internet is a huge, complex network whose present state is the outcome of a distributed
growth process without centralized control. Because of the importance of the Internet as our

∗Research supported by EU Thematic Network APPOL II, IST-2001-32007, and FET Open project COSIN,
IST-2001-33555, with funding provided by the Swiss Federal Office for Education and Science (BBW).

†Supported by the joint Berlin/Zurich graduate program Combinatorics, Geometry, and Computation (CGC),
financed by ETH Zurich and the German Science Foundation (DFG).

1

titto
Appendix 7.3

2 1 INTRODUCTION

basic communication infrastructure, significant research efforts have recently been devoted to the
discovery and analysis of its topology. The Internet topology can be considered either on the level
of individual routers and hosts or on the level of autonomous systems (subnetworks under separate
administrative control). In this paper, we focus on the autonomous system (AS) topology of the
Internet. The AS topology can be represented as an undirected graph: each vertex corresponds
to an AS, and two vertices are joined by an edge if there is at least one physical link between
the corresponding ASs. The AS topology has been investigated by a number of authors, see e.g.
[6, 13, 4, 15].

Different ASs exchange routing information using the Border Gateway Protocol (BGP). If an
AS X is connected to another AS Y , it announces the routes to a certain set A(X, Y) of destination
addresses to Y . This implies that when Y has a packet with a destination in the set A(X, Y), it
can forward the packet to the AS X, because X knows a route to that destination. An AS may
choose not to announce all routes that it knows to all of its neighbors; this decision is determined
by the routing policy employed by the AS.

While the AS topology provides information about the connections between ASs, it has been
pointed out in [8] that it is also important to know the economic relationships between ASs, because
these relationships determine the routing policies and thus the paths that packets can potentially
take in the network. If an AS X is connected to an AS Y , then Y can be a customer, provider, or
peer of X. If Y is a customer of X, then X announces all its routes to Y . If Y is a provider or
a peer of X, then X announces only the routes to destinations in its own AS and to destinations
announced by its own customers; it does (usually) not announce routes to destinations that it can
reach only through another provider or through peers. By knowing customer-provider relationships
between ASs, one could have a sound basis for investigations of routing issues in the Internet.

Since data about these relationships is not easy to obtain directly, however, a natural idea
is to infer AS relationships from the routing paths observed in the network (these paths can be
determined from BGP information). Subramanian et al. [14] pursue this approach and propose a
formulation of this inference problem as a combinatorial optimization problem, called the Type-
of-Relationship problem: given a graph and a set of paths in the graph, classify the edges of the
graph into customer-provider relationships and peer-peer relationships such that as many of the
paths as possible are valid (consistent with this classification). Here, a path is valid if it consists
of zero or more customer-provider edges, followed by at most one peer-peer edge, followed by zero
or more provider-customer edges. Subramanian et al. write that they suspect the problem to be
NP-hard but have been unable to prove this, and they propose a heuristic algorithm.

1.1 Our results

In this paper, we consider two versions of the Type-of-Relationship problem: the problem of com-
puting a classification such that all paths are valid (if such a classification exists), denoted AllToR,
and the problem of computing a classification that maximizes the number of valid paths, denoted
MaxToR. We prove that AllToR can be solved in linear time by reducing it to 2SAT and we
show that MaxToR is NP-hard, thus settling the complexity of the Type-of-Relationship prob-
lem left open in [14]. Our hardness proof implies that MaxToR cannot be approximated within
1/n1−ε (for any ε > 0) for general instances with n paths unless NP=co-RP. Motivated by the
characteristics of instances arising in practice, we then consider the case where the given paths are
short. First, we show that MaxToR can be approximated within a factor of (k+1)/2k if all paths

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

2 PRELIMINARIES 3

have length at most k. Then we give approximation algorithms achieving a better approximation
ratio for k = 2, 3, 4. We also prove that MaxToR is APX -complete for paths of bounded length.
APX -completeness (see e.g. [2]) implies that MaxToR cannot be approximated within a certain
constant factor unless P = NP, even for instances with short paths. Finally, we have implemented
our approximation algorithm and obtained very encouraging results on real data sets.

Independently of our work, Di Battista, Patrignani and Pizzonia [5] have recently also obtained
the result that AllToR can be solved in linear time and that MaxToR is NP-hard. Interestingly,
they also use 2SAT to solve the AllToR problem and present an NP-hardness proof by reducing
Max2SAT. Their reduction is based on the same idea with which we are able to prove APX -
hardness. Di Battista et al. do not consider the question of approximability or inapproximability
of MaxToR. Instead, they give an NP-hardness result for the problem of maximizing peer-peer
relationships and present a new heuristic algorithm for MaxToR. They do not give approximation
bounds for the algorithm, but they show that it performs well on real data sets.

The remainder of the paper is structured as follows. Definitions and preliminaries are given in
Section 2. Section 3 deals with the AllToR problem. The hardness results for general MaxToR
are given in Section 4. In Section 5, the approximability of MaxToR instances with paths of
bounded length is studied. Section 6 describes our experimental results.

2 Preliminaries

We are given a simple, undirected graph G = (V, E) whose nodes correspond to the autonomous
systems of the Internet and whose edges correspond to physical connections between those au-
tonomous systems. Furthermore, we are given a set P of simple, undirected paths in G. (We allow
that P contains a path several times, i.e., P can actually be a multi-set.) These paths are possible
data routes in the Internet; they are usually obtained from BGP routing tables. Informally, the
goal is to classify the edges of G as customer-provider or peer-peer relationships in a “correct” way
by using only the information obtained from the set of paths P . Here, the basic assumption is that
the routing policies of the ASs depend on these relationships in the way described in Section 1,
thus motivating the following definition (given in [14]).

Definition 1 For a classification of the edges of G into customer-provider and peer-peer relation-
ships, a path p ∈ P is valid if

• it starts with zero or more customer-provider edges

• followed by zero or one peer-peer edge

• followed by zero or more provider-customer edges.

The problem of classifying the edges into peer-peer or customer-provider relationship such that
a maximum number of paths are valid was posed as the Type-of-Relationship (ToR) problem in
[14]. We consider two versions of this problem: In the first variant, denoted AllToR, the goal is
to decide whether there is an edge classification such that all paths in P are valid, and to compute
such a classification if it exists. In the second variant, denoted MaxToR, the goal is to compute
an edge classification such that a maximum number of paths in P are valid.

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

4 2 PRELIMINARIES

customer provider

AS AS AS AS

peer peer

Figure 1: Representation of customer-provider and peer-peer relationship.

For convenience we represent a customer-provider edge as a directed edge from customer to
provider and a peer-peer edge as a bidirected edge between the two peers as shown in Figure 1.

Figure 2 gives some examples of valid and invalid paths. Using the directed and bidirected edge
formulation for customer-provider and peer-peer relationships, we can rephrase the validity of a
path as follows, where we take a bidirected edge to be pointing away from both of its endpoints.

Lemma 2 For a given edge classification (represented as directed and bidirected edges), a path p
is valid if and only if it does not contain a node from which two edges of p are pointing away.

pa: ◦ // ◦ // ◦ oo // ◦ oo ◦ oo ◦ pd: ◦ oo ◦ oo ◦ oo ◦
pb: ◦ // ◦ // ◦ // ◦ oo ◦ oo ◦ pe: ◦ // ◦ oo // ◦ // ◦
pc: ◦ // ◦ // ◦ oo ◦ oo ◦ oo ◦ pf : ◦ // ◦ oo ◦ // ◦

Figure 2: Paths pa, . . . , pd are valid, pe and pf are not valid.

Finally, we argue that peer-peer edges can be completely disregarded in this formulation of the
problem. To see this, assume that for a graph G and a set of paths P , the relationships between
the ASs have been classified as directed or bidirected edges. Now replace every bidirected edge
by a directed edge in arbitrary direction. Using Lemma 2, we see immediately that all the valid
paths remain valid after this operation. Figure 2 illustrates this transition for both directions from
path pa to path pb and from path pa to pc, respectively. Therefore, we can assume without loss of
generality that the solutions for MaxToR and AllToR computed by an algorithm do not contain
any bidirected edges.1

An assignment of directions to the edges of an undirected graph is called an orientation of the
graph. We can now state the AllToR and MaxToR problems simply as follows:

AllToR: Given a graph G and a set of paths P , decide whether there is an orientation of G such
that all paths in P are valid, and compute such an orientation if it exists.

MaxToR: Given a graph G and a set of paths P , compute an orientation of G such that a
maximum number of paths in P are valid.

In the case of MaxToR, we will be interested in approximation algorithms. Here, an algorithm
for MaxToR is a ρ-approximation algorithm if it runs in polynomial time and always computes
an orientation of G such that the number of valid paths is at least ρ times the number of valid
paths in the optimal orientation. Note that ρ ≤ 1.

The length of a path is defined as the number of edges on the path. All nodes on a path except
its two endpoints are called internal nodes of the path.

1From a practical point of view, it might be interesting to find an alternative formulation of the problem where
peer-peer edges are actually necessary.

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

3 THE ALLTOR PROBLEM 5

3 The AllToR problem

In this section we show that the AllToR problem is solvable in linear time. To this end we show
that an instance of AllToR can be reduced to a 2SAT problem.

Lemma 3 A path p ∈ P of length k can be split up into k − 1 paths pi, 1 ≤ i ≤ k − 1, each of
length 2, such that for any orientation of G, p is valid if and only if all pi are valid.

Proof: The construction of the k−1 paths works as follows: path p1 consists of the first two edges
of p. Path pi consist of edge i and edge i + 1 of path p. In this way, path pi overlaps with path
pi+1 by one edge. Figure 3 shows how a path of length 3 is split up into two paths of length 2. The
correctness of the lemma follows directly from Lemma 2. ut

p: ◦ e1 ◦ e2 ◦ e3 ◦
p1: ◦ e1 ◦ e2 ◦
p2: ◦ e2 ◦ e3 ◦

directed path p1 e1 e2 p1 valid 2SAT clause

◦ e1 // ◦ oo e2 ◦ in in yes e1 ∨ e2

◦ // ◦ // ◦ in out yes e1 ∨ e2

◦ oo ◦ oo ◦ out in yes e1 ∨ e2

◦ oo ◦ // ◦ out out no e1 ∨ e2

Figure 3: Decomposition of paths (left), and truth table for a path of length 2 (right).

By Lemma 3, it suffices to consider the AllToR problem for instances with paths of length 2.
(Paths of length 1 are always valid.) The truth table on the right-hand side of Figure 3 shows
a one-to-one correspondence between the validity of a path of length 2 and the logical or of two
literals. This suggests the use of 2SAT to solve the AllToR problem, resulting in the following
algorithm:

1. Orient the edges of G = (V, E) arbitrarily.

2. Split all paths p ∈ P into
∑

p∈P (`(p)− 1) paths of length 2 as shown above, where `(p) is the
length of path p.

3. Construct a 2SAT instance where each edge ei ∈ E corresponds to a variable and each path
p (of length 2) corresponds to a clause in the following way: like in the truth table of Figure 3,
ei appears negated if the corresponding edge is pointing away from the internal node v of p
and not negated if it is pointing towards v.

4. Solve the resulting 2SAT instance.

5. If the 2SAT instance is not satisfiable, the AllToR instance is not solvable. Otherwise, flip
the directions of all edges whose corresponding variable has been assigned false. This gives
an orientation where all paths are valid.

Correctness of the algorithm can be verified easily by looking at the four possible configurations for
input paths of length two and the assignment of the variables in the corresponding clause. Steps 1,
2, 3 and 5 can obviously be performed in time linear in the size of the input. 2SAT is well known
to be solvable in linear time, so the running-time for Step 4 is linear as well.

Theorem 1 AllToR can be solved in linear time.

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

6 4 THE GENERAL MAXTOR PROBLEM

4 The general MaxToR problem

In this section we show that MaxToR is NP-hard and even cannot be approximated well. To
achieve this we will give an approximation-preserving polynomial reduction from the well known
NP-hard maximum independent set problem (denoted MaxIS) to MaxToR. First, consider a
graph G with two paths as shown in Figure 4. It can be verified that in this graph there is no
orientation of the edges such that both paths are valid: Each of the three shared edges of both
paths would require to flip the direction in one of the paths to make them valid. But since a change
of direction of the edges in a valid path can happen only once, one of the two paths must be invalid.

Figure 4: A graph (middle) with two paths (left and right) that cannot both be valid in any
orientation.

Lemma 4 There exists a graph G with two paths such that only one of the two paths can be valid.

We will use this construction as a gadget to obtain a reduction from MaxIS to MaxToR. Let
an instance of MaxIS be given by an undirected graph H = (VH , EH). We create an instance
(G, P) of MaxToR by mapping every node in H to a path in P such that any two paths in P

• are edge-disjoint if there is no edge between them in H and

• cannot be valid simultaneously in any orientation if there is an edge between them in H .

Obviously, such an instance (G, P) can be constructed in polynomial time using the gadget of
Figure 4.

Now observe that there is a one-to-one correspondence between orientations of G with t valid
paths and independent sets in H with cardinality t. In particular, if we could solve MaxToR in
polynomial time or approximate it in polynomial time with ratio ρ, we could also solve MaxIS in
polynomial time or approximate it with ratio ρ, respectively. Since MaxIS is known to be NP-
hard and not even approximable with ratio 1/n1−ε on graphs with n nodes for any ε > 0 unless
NP=co-RP [10], we obtain the following hardness result for MaxToR.

Theorem 2 MaxToR is NP-hard and cannot be approximated within a factor of 1/n1−ε on
instances with n paths for any ε > 0 unless NP= co-RP.

Thus it is not feasible to get a good approximation ratio for the general MaxToR problem.
We might hope, however, to be able to exploit the structure of real AS graphs or the observed
routing paths in order to give an algorithm with good approximation ratio for a restricted case of
MaxToR.

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

5 APPROXIMATING MAXTOR INSTANCES WITH BOUNDED PATH LENGTH 7

5 Approximating MaxToR instances with bounded path

length

Motivated by the negative result concerning the approximability of the general MaxToR problem,
we now consider a restricted version of the problem. Looking at real world data [14, 1], we noticed
that most of the paths are actually quite short (see also Section 6). This leads us to consider
instances of MaxToR where the maximum length of the paths is bounded by a constant. In the
following, we first present a very simple randomized approach achieving constant approximation
ratio for this case. Then we show how to use an approximation algorithm for Max2SAT to achieve
significantly better approximation ratios for instances containing only paths of length at most k for
k = 2, 3, 4. Finally, we prove APX -completeness for instances where the path length is bounded
by an arbitrary constant, by an approximation preserving reduction from the Max2SAT problem,
which is well known to be APX -complete [2].

5.1 A simple constant factor approximation algorithm

For paths of constant length there is a very easy randomized approximation algorithm: just select
the directions of the edges independently at random. If each edge is oriented in one of the two
possible ways with probability 1/2, a path of length k is valid with probability

pk =
k + 1

2k
.

To see this, note that in a valid path the direction of the edges can change only once at one of the
k − 1 internal nodes or not at all. There are k − 1 possibilities for the direction of all edges in the
path in the former case and 2 possibilities in the latter case. Altogether there are 2k possibilities
to orient the edges. If all paths have length at most k, we get by linearity of expectation

E (Arand) ≥ k + 1

2k
n ≥ k + 1

2k
Opt,

where Arand is the value of the approximate solution and Opt the value of the optimum. The
algorithm can easily be derandomized in the standard way (method of conditional probabilities),
giving the following theorem.

Theorem 3 The MaxToR problem with paths no longer than k edges can be approximated within
a factor of k+1

2k of the optimum in polynomial time.

For example, this gives ratio 0.75 for paths of length at most 2, 0.5 for paths of length at most 3,
and 5/16 = 0.3125 for paths of length at most 4. We can also state the following corollary.

Corollary 5 The MaxToR problem with average path length bounded by k can be approximated
within a factor of 2k+1

2·4k of the optimum in polynomial time.

Proof: Consider an instance of MaxToR with n paths. If the average path length is k, there are
at least n/2 paths with length at most 2k. Applying the simple randomized algorithm described
above to these n/2 paths, we obtain a solution with at least

n

2
· 2k + 1

4k

valid paths. ut

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

8 5 APPROXIMATING MAXTOR INSTANCES WITH BOUNDED PATH LENGTH

5.2 Better ratios for paths of short length

To obtain better ratios for paths of length at most 4 or less we use the approximation algorithm for
Max2SAT due to Lewin, Livnat and Zwick [12]. They achieve a ratio of r = 0.940 by enhancing the
semidefinite programming (SDP) based approach first presented in the seminal paper by Goemans
and Williamson [9]. Given an instance (G, P) of MaxToR, we construct an instance of Max2SAT
from the paths as described in Section 3 (by splitting every path into paths of length two and adding
a clause for each length 2 path) and apply the Max2SAT approximation algorithm to the resulting
instance. Then we orient the edges of G according to the assignment returned by the Max2SAT
algorithm. It may seem surprising that this approach gives a good ratio because there is not
necessarily a one-to-one correspondence between paths and clauses.

First, a bit of notation: Let Opt denote the optimum value of the considered MaxToR instance
and Ak the value of our approximate solution for an instance with path length bounded by k. Let
gk be the number of paths in P that have length exactly k. Note that paths of length 1 can be
ignored, since they are always valid. Hence, we can assume g1 = 0. Furthermore, note that for
deriving lower bounds on the approximation ratio Ak/Opt, it suffices to consider only instances in
which all paths have length exactly k: If an instance contains a shorter path, this path can easily
be lengthened by adding an appropriate number of extra nodes and edges to the path at one of its
ends. At most k · n edges and nodes are added, and a solution to this modified instance clearly
gives a solution to the original instance with at least the same number of valid paths.

In the simplest case, when all paths have length 2, we can directly transfer the ratio r = 0.940
from Max2SAT to MaxToR. This is because each path is represented by exactly one clause
which is satisfied if and only if the path is valid.

e1 e2 e3

Figure 5: A path of length 3 which leads to the two clauses e1 ∨ e2 and e2 ∨ e3. See Section 3 for
details about the definition of the clauses given a graph and paths.

Now consider a path of length 3. It is represented by two 2SAT clauses. The variable corre-
sponding to the edge in the middle appears in both clauses, once negated and once not negated
(see Figure 5 for an example). Therefore, one of the two clauses is always satisfied. Clearly, both
clauses are satisfied if and only if the path is valid. This gap of either one or two clauses being
satisfied can be used to derive a bound on the approximation ratio. Consider a MaxToR instance
with n = g3 paths of length 3. Note that an optimal solution of Max2SAT has the value Opt+ g3

and directly gives an optimal solution to the MaxToR problem (with value Opt). The Max2SAT
approximation algorithm satisfies A3 + g3 clauses with

A3 + g3

Opt + g3
≥ r. (1)

Because there is always a solution to Max2SAT such that at least 3/4 of the clauses are satisfied
and there are 2 · g3 clauses, we have A3 + g3 ≥ 3/2 · g3 or g3 ≤ 2 ·A3. Applying this to (1) leads to

A3 ≥ r · (Opt + g3) − g3 ≥ r · Opt + 2(r − 1) · A3

A3 ≥ r

3 − 2r
Opt

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

5 APPROXIMATING MAXTOR INSTANCES WITH BOUNDED PATH LENGTH 9

giving approximation ratio r/(3 − 2r) ≥ 0.839. Note that this is a considerable improvement over
the ratio 1/2 obtained for paths of length three by Theorem 3.

In a Max2SAT instance derived from paths of length 4 there will be three clauses for each of
the paths. We refer to the three clauses of a path as a triple. With the same argumentation as
for length 3 paths, we have that for each triple at least one clause is always satisfied and all three
are satisfied if and only if the corresponding path is valid. This shows that any solution of this
instance satisfies

x + y + g4

clauses, where g4, y and x are the number of triples with at least one, at least two and exactly
three satisfied clauses, respectively. Note that x yields the number of valid paths and x ≤ y ≤ g4.

We now compare a solution S = A4 + y + g4 computed by the Max2SAT approximation
algorithm with a solution S ′ = Opt+ y′ + g4 derived from an optimal solution of the corresponding
MaxToR instance. By [7] we know that S/S ′ ≥ r. From this we can bound the approximation
ratio A4/Opt. In the worst case y = g4 and y′ = Opt. This gives

A4 + 2 · g4

2 · Opt + g4
≥ r

A4 ≥ 2r · Opt + (r − 2) · g4 ≥ 2r · Opt + 4(r − 2)A4,

because there are 3 · g4 clauses of which at least 3/4 are satisfied in the approximate solution, i.e.
A4 + 2 · g4 ≥ 9/4 · g4 or g4 ≤ 4 · A4. Solving for A4 we get

A4 ≥ 2r

9 − 4r
· Opt.

This gives an approximation ratio of 2r/(9− 4r) ≥ 0.358, which is a slight improvement compared
to 5/16 = 0.3125.

Note that this approach cannot be carried over to paths of length greater than 4. It uses the
fact that at least 3/4 of the clauses can be satisfied, which does not help if each path is represented
by 4 or more clauses and the path is valid if and only if all of them are satisfied.

Summarizing the results discussed above, we get the following theorem.

Theorem 4 The MaxToR problem with paths no longer than k edges can be approximated within
a factor ck of the optimum in polynomial time, where ck has the following form:

• c2 := 0.940

• c3 := 0.839

• c4 := 0.358

• ck := k+1
2k for k > 4

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

10 5 APPROXIMATING MAXTOR INSTANCES WITH BOUNDED PATH LENGTH

5.3 APX -hardness

So far we have given constant-factor approximation algorithms for instances of MaxToR with
paths of bounded length. Now we show that even instances containing only paths of length 2
cannot be approximated better than some constant unless P = NP. Both results together give
that MaxToR with constant maximal path length is APX -complete.

To this aim, we reduce Max2SAT and apply an APX -hardness result by H̊astad [11]. We
start by reducing a Max2SAT instance to a MaxToR instance (G, P) with paths of length 3.
Then we explain how this instance can be modified such that it contains only paths of length 2.

Assume that we are given a Max2SAT instance with variables xi, i ∈ {1 . . . n′} and clauses cj ,
j ∈ {1 . . .m′}. For each variable xi we add two nodes xi, xi to G and an edge ei = {xi, xi} between
them. If in a solution to MaxToR this edge is directed towards xi this corresponds to xi = true .
Otherwise, if it is directed towards xi, this means xi = false. For each clause ck = li ∨ lj , with
literals li ∈ {xi, xi} and lj ∈ {xj , xj}, one edge {li, lj} is added. Additionally a path of length 3 is
added to P along the nodes li, li, lj, lj. Figure 6 shows a simple example with one clause, and the
graph on the left-hand side of Figure 7 shows an example with two clauses.

Max2SATclause path graph directed path truth value
(x1 ∨ x2) x1, x1, x2, x2 x1

B
B
B
B
B
B
B
B

x2

x1 x2

x1

 B
B
B
B
B
B
B
B

x2

x1

OO

x2

��

x1 = 1, x2 = 0

Figure 6: Example of how an instance of MaxToR is constructed from a Max2SAT instance. On
the right-hand side, a possible assignment of directions to the edges and the corresponding truth
values are shown.

The paths and edges are defined such that a path is valid in a solution to the MaxToR instance
if and only if the corresponding clause is satisfied. This is clear because a path is valid if and only
if either ei is directed towards li or ej towards lj , which corresponds to a truth assignment where
li ∨ lj is satisfied. In particular, note that given a satisfied clause the edge {li, lj} can always be
directed such that the whole path is valid. Conversely, for an unsatisfied clause no such direction
of {li, lj} exists.

Thus, maximizing the number of valid paths also maximizes the number of satisfied clauses.
With [11] we get that MaxToR is not approximable within ratio q = 0.955 for instances with
paths of length at most k for any constant k ≥ 3.

To obtain a similar result for paths of length 2, we modify the instance as follows: each path
li, li, lj , lj is replaced by two overlapping paths li, li, lj and li, lj , lj. See the graph in the middle of
Figure 7 for an example. Clearly, in a MaxToR solution one of the two paths is always valid. The
corresponding clause is satisfied if and only if both paths are valid. So an optimal solution to the
MaxToR instance with Opt valid paths gives an optimal assignment to the variables such that
Opt − m′ clauses are satisfied. An approximate solution to MaxToR giving A2 valid paths leads
to A2 − m′ satisfied clauses. With [11] we know that

A2 − m′

Opt − m′ ≤ q

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

6 EXPERIMENTAL RESULTS 11

e2 e31ee2 e31e

x x x1 2 3

x x x1 2 3 x x x1 2 3 x x x1 2 3

x x x1 2 3 x x x1 2 3

e e2 e31

Figure 7: Network and paths resulting from the two clauses x1 ∨ x2, x2 ∨ x3: Constructed instance
with length 3 paths (left), modified instance with length 2 paths (middle), and possible solution
where both clauses are satisfied (right).

for at least one instance of Max2SAT. With Opt − m′ ≥ 3/4 · m′ (at least 3/4 of the clauses of
any Max2SAT instance can be satisfied) this yields

A2 ≤ 4 + 3q

7
· Opt,

which gives the following theorem.

Theorem 5 Unless P= NP, there is no approximation algorithm for MaxToR with paths of
length at most k that achieves ratio at least 4+3q

7
≤ 0.981 if k = 2 and ratio at least 0.955 if k ≥ 3.

In particular, with Theorem 4 we have that MaxToR is APX -complete for paths with constant
maximum length.

6 Experimental results

In this section we discuss some experiments conducted with the approximation algorithm for Max-
ToR presented in Section 5.2: the algorithm constructs a Max2SAT instance from the given paths
and uses an SDP-based algorithm to obtain an approximate solution. For our experiments we used
the data that has been accumulated by Subramanian et al. [14] and is available on the WWW [1].
For three different dates (18 April 2001, 4 February 2002, and 6 April 2002) routing paths from
10, 9, respectively 14 autonomous systems were collected. From these 3.4 to 6.4 million paths in a
network of about 10,000 nodes and 25,000 edges, the edge directions were deduced. It is notable
that the path lengths are relatively short (see Table 1), i.e. the assumption in Section 5.2 that the
path lengths are bounded by a small constant is quite realistic.

Table 1: Size of the network and number of paths at the three different dates. The maximal and
average path lengths are given before (max1 and avg1) and after (max2 and avg2) the preprocessing
described in the text.

Date # of nodes # of edges # of paths max1 avg1 max2 avg2

18 Apr 2001 10923 23935 3423422 12 3.52 10 1.70
4 Feb 2002 12788 27936 4988100 11 3.52 9 1.32
6 Apr 2002 13164 28510 6356435 11 3.55 8 1.39

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

12 REFERENCES

In our implementation the paths are first preprocessed by directing edges that can be directed
without conflicts. This shortens the paths considerably (cf. Table 1). Then it is checked with the
AllToR algorithm described in Section 3 whether the graph can be oriented such that all paths
are valid. This was not the case for any of the three dates. Finally, an approximate solution is
calculated as described in Section 5.2: Max2SAT is relaxed as in [9] and the rounding is done as
in [7]. In [7] the improved approximation ratio could be achieved by adding new constraints and
a modified rounding strategy. We could not add the constraints because the instance would have
become too large. The new rounding strategy was adopted though. The freely available solver
DSDP 4.5 [3] was used to solve the semidefinite programs. The overall results are given in Table 2.
The computed orientations make roughly 98% of the given paths valid. This should be contrasted
with the edge classifications computed by the heuristic algorithm of [14] that are also available at
[1]. In these edge classifications, only about 80% of the paths are valid. This demonstrates that it
pays off to use SDP-based approximation algorithms for MaxToR in practice.

Table 2: Experimental results achieved with the approximation algorithm presented in Section 5.2.

Date Total # of paths # of valid paths
18 Apr 2001 3423422 3360926 (98.17%)
4 Feb 2002 4988100 4919310 (98.62%)
6 Apr 2002 6356435 6204849 (97.62%)

References

[1] S. Agarwal. Data used in [14].
http://www.cs.berkeley.edu/∼sagarwal/research/BGP-hierarchy/, 2002.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Combinatorial Optimization Problems and their Approxima-
bility Properties. Springer, Berlin, 1999.

[3] S. Benson. Semidefinite programming solver DSDP 4.5.
http://www-unix.mcs.anl.gov/∼benson/, 2002.

[4] T. Bu and D. Towsley. On distinguishing between Internet power law topology generators. In
Proceedings of INFOCOM’02, June 2002.

[5] G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types of the relationships
between autonomous systems. Technical Report RT-DIA-73-2002, Dipartimento di Informatica
e Automazione, Università di Roma Tre, 2002.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet
topology. In Proceedings of ACM SIGCOMM’99, 1999.

[7] U. Feige and M. Goemans. Approximating the value of two proper proof systems, with appli-
cations to MAX 2SAT and MAX DICUT. In Proceedings of the Third Israel Symposium on
Theory of Computing and Systems, pages 182–189, 1995.

[8] L. Gao. On inferring autonomous system relationships in the internet. IEEE/ACM Transac-
tions on Networking, 9:733–745, 2000.

Classifying Customer-Provider Relationships in the Internet TIK-Report Nr. 145

REFERENCES 13

[9] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

[10] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142, 1999.
[11] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
[12] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX 2-SAT and

MAX DI-CUT problems. In Integer Programming and Combinatorial Optimization (IPCO),
LNCS 2337, pages 67–82, 2002.

[13] A. Medina, I. Matta, and J. Byers. On the origin of power laws in Internet topologies. ACM
Computer Communication Review, 30(2):18–28, April 2000.

[14] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the Internet hierarchy
from multiple vantage points. In Proceedings of INFOCOM’02, June 2002.

[15] D. Vukadinović, P. Huang, and T. Erlebach. On the spectrum and structure of Internet
topology graphs. In Innovative Internet Computing Systems, LNCS 2346, pages 83–95, June
2002.

TIK-Report Nr. 145 Classifying Customer-Provider Relationships in the Internet

Computing the Types of the Relationships between
Autonomous Systems

Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia
Dipartimento di Informatica e Automazione, Università di Roma Tre, Rome, Italy

Email: {gdb,patrigna,pizzonia}@dia.uniroma3.it

Abstract— We investigate the problem of computing the types
of the relationships between Internet Autonomous Systems. We
refer to the model introduced in [1], [2] that bases the discovery of
such relationships on the analysis of the AS paths extracted from
the BGP routing tables. We characterize the time complexity of
the above problem, showing both NP-completeness results and
efficient algorithms for solving specific cases. Motivated by the
hardness of the general problem, we propose heuristics based on
a novel paradigm and show their effectiveness against publicly
available data sets. The experiments put in evidence that our
heuristics performs significantly better than state of the art
heuristics.

I. INTRODUCTION

An Autonomous System (AS) is a portion of Internet under
a single administrative authority. Currently, there are more
than 10, 000 ASes and their number is rapidly growing.
They interact to coordinate the IP traffic delivery, exchanging
routing information with a protocol called Border Gateway
Protocol (BGP) [3].

Several authors (see, e.g. [4], [5]) have pointed out that
the relationships between ASes can be roughly classified into
categories that have both a commercial and a technical flavor.
A pair of ASes such that one sells/offers Internet connectivity
to the other is said to have a provider-customer relationship. If
two ASes simply provide connectivity between their respective
customers are said to have a peer-to-peer relationship. Finally,
if two ASes offer each other Internet connectivity are said
to be siblings. Of course, this classification does not capture
all the shades of the possible commercial agreements and
technical details that govern the traffic exchanges between
ASes but should be considered as an important attempt toward
understanding the Internet structure.

Since many applications would benefit from the knowledge
about the Internet structure, the research on the subject has
recently produced many contributions. More specifically, there
is a wide research area focusing on the discovery of the
topology underlying the Internet structure, either at the AS
and at the router level (see, for example, [6], [7], [8]).

Other researchers concentrate more directly on the above
mentioned relationships and on the hierarchy that they induce

Work partially supported by European Commission - Fet Open project
COSIN - COevolution and Self-organisation In dynamical Networks - IST-
2001-33555, by “Progetto ALINWEB: Algoritmica per Internet e per il Web”,
MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, and
by “The Multichannel Adaptive Information Systems (MAIS) Project”, MIUR
Fondo per gli Investimenti della Ricerca di Base.

on the set of ASes. Govindan and Reddy [6] study the interplay
between the degree of the ASes and their rank in the hierarchy,
where the degree of an AS is the number of ASes that have
some kind of relationship with it. Gao [1] studies, for the first
time, the following problem. ASes are the vertices of a graph
(AS graph) where two ASes are adjacent if they exchange
routing information; the edges of such a graph should be
labeled in order to reflect the type of relationship they have.
In order to infer the relationships between ASes, Gao uses
the information on the degree of ASes together with the AS
paths extracted from the BGP routing tables. An AS path is
the sequence of the ASes traversed by a connectivity offer
(BGP announcement). In [1] a heuristic is presented together
with experimental results. An analysis on the properties of the
labeled graphs obtained with such heuristics is provided in [9].

Subramanian et al. [2] formally define, as a minimization
problem, a slightly simplified version of the problem addressed
in [1] and conjecture its NP-completeness. They also propose a
heuristic based on the observation of the Internet from multiple
vantage points, which does not rely on the degree of the ASes.
Further, they validate the results obtained by the heuristic
against a rich collection of data sets.

This paper contributes to the line of research opened in [1],
[2]. Namely, its main results are the following.

• We solve a problem explicitly stated in [2]. Namely, we
characterize the complexity of determining the relation-
ships between ASes while minimizing the number of
“anomalies”. In particular:

– We show that such a problem is NP-complete in the
general case;

– We produce a linear time algorithm for determining
the AS relationships in the case in which the problem
admits a solution without anomalies; and

– We use such a linear time algorithm to show that
for large portions of the Internet (e.g., data obtained
from single points of view) it is often possible to
determine the relationships between ASes with no
anomalies.

• We introduce heuristics, based on a novel approach, for
determining the relationships between ASes with a small
number of anomalies.

• We experimentally show that the proposed approach leads
to heuristics that performs significantly better than the
cutting edge heuristics of [2].

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

titto
Appendix 7.4

The paper is structured as follows. Section II describes the
addressed problem. Sections III and IV show an algorithm for
testing if the problem admits a solution with no anomalies,
and show how to find a solution if it exists. In Section V we
prove the NP-completeness of the problem in the general case.
Section VI shows new heuristics and compare the results with
the state of the art. Finally, Section VII contains conclusions
and open problems.

II. PROBLEM DESCRIPTION

A prefix is a block of destination IP addresses. An Internet
Autonomous System (AS) applies local policies to select the
best route for each prefix and to decide whether to export this
route to neighboring ASes.

Several authors have pointed out that ASes typically have
provider-customer or peer-to-peer relationships (see, e.g. [4],
[5], [10], [2]). A customer exports to a provider its routes
and the routes learned from its own customers, but does not
export routes learned from other providers or peers. A provider
exports to a customer its routes, the routes learned from the
other customers, its providers, and its peers. Peers export to
each other their own routes and the routes learned from their
customers but do not export the routes learned from their
providers and other peers.

Consider the AS paths that are associated with the BGP
announcements of the routes. If all the ASes adopted export
policies according to the above model, then the AS paths
would have a peculiar structure [1], [2]. Namely, (1) no AS
path can contain more than one pair of ASes having a peer-
to-peer relationship; and (2) once a provider-customer or a
peer-to-peer pair of ASes is met in the AS path, no customer-
provider can be found in the remaining part of it.

Further, the above mentioned peculiarities of the AS paths
have been formally stated in a theorem of [1], that has been
also re-casted in [2]. A graph-theoretic formulation of the same
theorem will be given in what follows.

A. Type-of-Relationship problem

The relationships between ASes in the Internet may be
represented as a graph G whose edges are either directed or
undirected. Each vertex is an AS, a directed edge from vertex
u to vertex v indicates that u is a customer of v (provider-
customer relationship), and an undirected edge between vertex
w and vertex z indicates that w and z are peers (peer-to-
peer relationship). A BGP AS path corresponds to a path on
G. Suppose path p is composed by the sequence of vertices
v1, . . . , vn, then p is valid if it is of one of the following two
types.

Type 1: p is composed by a (possibly empty) sequence
of forward edges followed by a (possibly empty)
sequence of backward edges; more formally, there
exists a vertex vi of p such that for j ∈ 1, . . . , i − 1
edge (vj , vj+1) is directed from vj to vj+1 and for
j ∈ i, . . . , n − 1 edge (vj , vj+1) is directed from
vj+1 to vj . (See Figure 1.a).

(a)

(b)

v10

1v 2v 3v 4v v5

v6 v7 v8 v9

Fig. 1. An example of Type 1 (a) and of Type 2 (b) path.

Type 2: p is composed by a (possibly empty) sequence of
forward edges, followed by an undirected edge, fol-
lowed by a (possibly empty) sequence of backward
edges; more formally, there exists a vertex vi of p
such that for j ∈ 1, . . . , i − 1 edge (vj , vj+1) is di-
rected from vj to vj+1, edge (vi, vi+1) is undirected,
and for j ∈ i+1, . . . , n−1 edge (vj , vj+1) is directed
from vj+1 to vj . (See Figure 1.b).

See Figure 1 for examples of Type 1 and of Type 2 paths.
An invalid path is a path that is not valid.
At this point the above mentioned theorem [2] can be

restated as follows: if every AS obeys the customer, peer, and
provider export policies, then every advertised path is either
of Type 1 or of Type 2.

However, the Internet is more complex. To give a few
examples: ASes operated by the same company can have a
sibling relationship, where each AS exports all its routes to
the other; two ASes may agree a backup relationship between
them, to overcome possible failures; or ASes may have peering
relationships through intermediate ASes. However, finding out
which is the portion of Internet that obeys the customer, peer,
and provider export policies can be considered as the first step
toward a complete comprehension of the relationships between
ASes. Such motivations have pushed the authors of [2] toward
identifying the following problem.

Type-of-Relationship (ToR) Problem [2]: Given an
undirected graph G and a set of paths P , give an
orientation to some of the edges of G to minimize
the number of invalid paths in P .

Figure 2 shows an instance of the ToR problem for which
an orientation without invalid paths cannot be found. In
particular, each orientation of edge (AS701, AS5056) yields
at least one invalid path. Suppose, in fact, that edge (AS701,
AS5056) was directed from AS701 to AS5056. Path AS5056,
AS701, AS4926, AS6461, AS2914, AS174, AS14318 (drawn
solid in the figure) would be valid only if edge (AS4926,
AS6461) was directed from AS6461 to AS4926. Similarly,
path AS5056, AS701, AS6461, AS4926, AS4270, AS4387
(drawn dotted in the figure) would be valid only if edge
(AS4926, AS6461) was directed from AS4926 to AS6461.
Hence, we have a contradiction, since edge (AS4926, AS6461)
should have opposite orientations. Now, suppose that edge
(AS701, AS5056) was undirected. The same arguments apply,
leading to the same contradiction. Finally, suppose that edge

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

AS14318

AS4387

AS7660 AS8151

AS13099

5056 701 6461 4926 4270 4387

5056 701 4926 6461 2914 174 14318

7660 1 5056 701 11334

5056 1 1239 8151

1239 5056 701 11334

5056 1239 1 1755 3216 13099

AS174

AS5056AS3216

AS2914

AS1755

AS4270

AS1 AS1239

AS6461AS4926

AS11334 AS701

Fig. 2. An instance of the ToR problem that does not admit an orientation
without invalid paths. The six paths of the instance are represented with
different line styles.

(AS701, AS5056) was directed from AS5056 to AS701. It is
easy to see that in this case we have a contradiction on the
orientation of edge (AS1, AS1239).

Figure 3 shows an instance of the ToR problem that admits
an orientation without invalid paths. Figures 4 and 5 show a
possible orientation.

AS4197 AS3967

AS7018

AS8709 AS8938

AS3561 AS8843

AS10311AS1740AS3582

AS6893

AS15493

Fig. 3. An instance of the ToR problem that admits an orientation without
invalid paths. The four paths of the instance are represented with different
line styles.

B. Simplifying the problem

The Type-of-Relationship Problem is a minimization prob-
lem. In order to studying it, following a standard tech-
nique [11], we consider its corresponding decision version as
follows.

AS4197 AS3967

AS7018

AS8709 AS8938

AS3561 AS8843

AS10311AS1740AS3582

AS6893

AS15493

Fig. 4. An orientation for the graph of Figure 3. Note that all the paths are
valid.

AS3967

AS7018

AS10311AS1740

AS4197AS3582

AS8843

AS6893

AS15493

AS3561

AS8709

AS8938

Fig. 5. The directed graph of Figure 4 is drawn in such a way to emphasize
the hierarchical relationships induced by the orientation.

ToR-D Problem: Given an undirected graph G, a set
of paths P , and an integer k, test if it is possible to
give an orientation to some of the edges of G so that
the number of invalid paths in P is at most k.

One of the ingredients that make the ToR-D problem
difficult is the presence of both directed and undirected edges.
Fortunately, the problem can be simplified by “ignoring” the
undirected edges, without loosing its generality. Namely, the
ToR-D problem admits a solution if and only if the following
simpler problem admits one.

ToR-D-simple Problem: Given an undirected graph
G, a set of paths P , and an integer k, test if it is
possible to give an orientation to all the edges of G
so that the number of invalid paths in P is at most k.

Notice that the ToR-D-simple problem considers Type 1
paths only.

In fact, consider an orientation of the edges of G that is
a solution for the ToR-D-simple problem. It is clear that the
same orientation is also a solution for the ToR-D problem.
Conversely, consider an orientation of some of the edges of
G that is a solution for the ToR-D problem and let (u, v) be
an edge of G that is undirected. Consider any path p of P

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

through (u, v). Two cases are possible: either p is valid or p
is invalid.

If p is valid (see Figure 6), then it is a Type 2 path and all the
edges of p preceding u are forward edges, while all the edges
of p following v are backward edges. If (u, v) is arbitrarily
oriented, then the only effect on p is of transforming it from
Type 2 to Type 1. Hence, the number of invalid paths does not
increase. If p is invalid and (u, v) is arbitrarily oriented either
it becomes valid or it remains invalid. In this case the number
of invalid paths does not increase. The same process can be
repeated on all the undirected edges, until an orientation of G
that is a solution for ToR-D-simple is found.

u v

Fig. 6. An undirected edge (u, v) of a solution of the ToR-D problem. The
two paths traversing (u, v) are represented one with a solid line and the other
with a dot-dashed line. Both paths are valid.

To better understand the relation between the two problems,
observe that the above consideration suggests that for each
partial orientation of G that is a solution of ToR-D with n
undirected edges there exist 2n orientations that are a solution
for ToR-D-simple.

Further, we can pick an orientation that is a solution for
ToR-D-simple and consider it as a solution for ToR-D.
Then, we can refine such a solution looking for edges whose
orientation can be removed without increasing the number of
anomaly paths. A necessary and sufficient condition, that is
also easy to test, for removing the orientation of a single
directed edge (u, v) is the following. Consider all the paths
through (u, v) and all the edges following (u, v) in such paths.
Edge (u, v) can be made undirected if such edges are all
directed toward v.

The above discussion justifies a two steps approach where
in the first step a solution is found for ToR-D-simple and in
the second step peering edges are discovered.

III. TESTING WHETHER AN AS GRAPH ADMITS A

HIERARCHICAL STRUCTURE WITHOUT PATH ANOMALIES

In Section II we have seen that the problem of detecting
the types of relationships between ASes can be tackled by
studying the ToR problem, its decision version ToR-D, and a
simpler problem called ToR-D-simple. The relations among
such problems have also been discussed. In this section we

show that problem ToR-D-simple (and, consequently, ToR-
D) can be solved efficiently when k = 0, that is when we
want to check if G admits an orientation where all the paths
are valid (i.e., there are 0 invalid paths).

A. Path anomalies and boolean formulas

Observe that a path p on G composed by the sequence of
vertices v1, . . . , vn is of Type 1 if and only if it does not exist
a vertex vi (i = 2, . . . , n − 1) of p such that the two edges of
p incident on vi are directed away from vi. Hence, to impose
that p is valid it suffices to rule out such a configuration. Based
on this observation ToR-D-simple can be mapped to a 2SAT
problem [11].

In the 2SAT problem you are given a set X of boolean
variables and a formula in conjunctive normal form. Such a
formula is composed by clauses of two literals, where a literal
is a variable or a negated variable. You are asked to find a
truth assignment for the boolean variables in X so that the
formula is satisfied.

The mapping of ToR-D-simple to 2SAT is a two step
process. First, all the edges of G are arbitrarily (for example
randomly) oriented. Second, a boolean formula is constructed
so to represent the constraints that each path imposes on
the orientation of G in order to be a path of Type 1. The
construction is performed as follows.

• For each directed edge (vi, vj) of G a variable xi,j is
introduced. A true value for xi,j means that, in the final
orientation, (vi, vj) will be directed from vi to vj (that
is, the direction of the initial arbitrary orientation will be
preserved), while a false value means that (vi, vj) will be
directed from vj to vi (that is, the direction of the initial
arbitrary orientation will be reversed).

• Consider a path p ∈ P and three consecutive vertices
vi−1, vi, vi+1 of p. Four cases are possible, according to
the arbitrary orientations that we have given to the edges
between vi−1, vi, and vi+1.

– Both edges are directed toward vi, i.e. such directed
edges are (vi−1, vi) and (vi+1, vi). We introduce
clause xi−1,i ∨ xi+1,i.

– Both edges are directed away from vi, i.e. such
directed edges are (vi, vi−1) and (vi, vi+1). We in-
troduce clause xi,i−1 ∨ xi,i+1.

– One edge is directed toward vi and the other toward
vi+1, i.e. such directed edges are (vi−1, vi) and
(vi, vi+1). We introduce clause xi−1,i ∨ xi,i+1.

– One edge is directed toward vi−1 and the other
toward vi, i.e. such directed edges are (vi, vi−1) and
(vi+1, vi). We introduce clause xi,i−1 ∨ xi+1,i.

In this way we introduce n − 2 clauses for each path of
P with n vertices. We impose that all the constraints are
simultaneously satisfied by considering the boolean “and” of
all the clauses. Since each clause has two literals, we have
mapped the ToR-D problem to a 2SAT formula.

As an example consider a path composed by five vertices
v1, . . . , v5 and suppose that the initial orientation step has

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

TABLE I

TELNET LOOKING GLASS SERVERS AND CORRESPONDING AS GRAPHS.

AS # AS Name Apr 18, 2001 Apr 6, 2002
Vertices # Edges # Paths # Vertices # Edges # Paths

1 Genuity 10,203 13,001 58,156 12,700 15,946 63,744
1740 CERFnet 10,007 13,416 70,830 not available
3549 Globalcrossing 10,288 13,039 60,409 12,533 16,025 76,572
3582 U. of Oregon 10,826 22,440 2,584,230 13,055 27,277 4,600,981
3967 Exodus Comm. 10,387 18,401 254,123 12,616 21,527 339,023
4197 Global Online Japan 10,288 13,004 55,060 12,518 15,628 59,745
5388 Energis Squared 10,411 13,259 58,832 12,659 16,822 117,003
7018 AT&T 9,252 12,117 120,283 11,706 15,429 170,325
8220 COLT Internet 8,376 10,932 46,606 12,660 18,421 154,855
8709 Exodus, Europe 10,333 15,006 114,931 12,555 18,175 126,370

() ()

()

(a)

() ()

()

(b)

() ()

()

(c)

x1,2 x3,2 x3,4 x4,5

1v 2v 3v 4v v5

x1,2 x3,2 x4,5x3,4

x3,2 x3,4

1v 2v 3v 4v v5

1,2 3,2 3,4 4,5x = falsex = falsex = falsex = true

x1,2 x3,2 = true x4,5x3,4 = true

x3,2 x3,4 = true

2v 3v 4v v51v
4,53,43,21,2 x = truex = true x = false x = false

x1,2 x3,2 = true x4,5x3,4 = false

x3,2 x3,4 = true

Fig. 7. (a) An initial orientation for a five vertices path and the boolean
variables associated with its edges. The orientation shown in (b), which makes
the path valid, corresponds to the truth assignment x1,2 = true, x3,2 =
false, x3,4 = false, and x4,5 = false, which satisfies formula (x1,2 ∨
x3,2)∧(x3,2∨x3,4)∧(x3,4∨x4,5) associated with the path. Conversely, the
orientation shown in (c), which makes the path invalid, corresponds to the truth
assignment x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true,
which does not satisfy the formula.

given to the edges of the path a direction as follows: (v1, v2),
(v3, v2), (v3, v4), and (v4, v5). We have variables x1,2, x3,2,
x3,4, and x4,5 (see Figure 7.a). Applying the above procedure
we obtain the following 2SAT formula: (x1,2 ∨x3,2)∧ (x3,2 ∨
x3,4) ∧ (x3,4 ∨ x4,5). Consider the truth assignment x1,2 =
true, x3,2 = false, x3,4 = false, and x4,5 = false. It is
easy to see that it satisfies the formula and that it corresponds
to an orientation of the edges of the path toward vertex v3 (see

Figure 7.b). On the other hand, consider the truth assignment
x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true. It
is easy to see that it does not satisfy the formula and that it
corresponds to an orientation of the edges of the path that is
not consistent with Type 1 (see Figure 7.c).

B. Computational aspects

Problem 2SAT may be efficiently solved by using the well
known result in [12] that maps 2SAT into a problem on a
suitable directed graph G2SAT. Observe that G and G2SAT are
different graphs.

Although this result is clearly illustrated in the literature,
we give here a brief description of it, that will help the reader
to better understand the algorithms described in Sections IV,
and VI.

Graph G2SAT has two nodes for each boolean variable x of
2SAT, corresponding to its two literals x and x. Further, for
each clause of the form l1 ∨ l2, where l1 and l2 are literals,
the two directed edges (l1, l2) and (l2, l1) are introduced.
Intuitively, edge (l1, l2) represents the logical implication l1 →
l2, while edge (l2, l1) represents l2 → l1. Problem 2SAT
admits a solution if and only if for no variable x there is a
directed cycle in G2SAT containing both x and x (i.e. a logical
contradiction).

Testing, for each variable, if there exists a cycle contain-
ing its two literals can be quite time consuming. However,
fortunately, the problem of testing for all the variables in
2SAT whether such a cycle exists in G2SAT can be efficiently
solved by computing [13] the strongly connected components
of G2SAT and by testing for each variable if x and x are in the
same strongly connected component. We recall that a strongly
connected component of a directed graph is a maximal set of
vertices such that for each pair u, v of vertices of the set there
exists a directed path from u to v and vice versa. Computing
the strongly connected components of a directed graph can be
done in time linear in the size of the graph [13].

From a theoretical point of view, it comes out that ToR-D-
simple (and, as a consequence, ToR-D) with k = 0, i.e. the
problem of deciding if a graph G of n vertices and m edges
admits an orientation so that all the paths of a set P are valid,
can be solved in O(n + m + q) time, where q is the sum of
the lengths of the paths of P .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

More practically, we have implemented the above algorithm
by exploiting a facility from the Leda [14] software library that
efficiently computes the strongly connected component of a
directed graph and that labels each vertex of the graph with
an integer that identifies the component it belongs to. Hence,
testing for a variable x if x and x are in the same strongly
connected component is performed by testing whether they
have the same label.

C. Experiments

This section illustrates the first group of experiments of this
paper. Such experiments have the purpose of understanding if
at least for partial views of the Internet graph the ToR problem
admits a solution without invalid paths. This is important, in
our opinion, at least for the following reason. Even if it is
unlikely that the entire Internet AS graph could be classified
in terms of customer-provider and peer-to-peer relationships
without exceptions (and we will see evidence of this in the
remainder of this paper), it is unclear if this is possible for
what is visible from a specific observation point (“vantage
point” in [2]) of the network.

The test bed consists of BGP data sets obtained as follows.
Each data set is extracted from the BGP routing table of
a Looking Glass server. First, the output of the “show ip
bgp” command is collected. Second, a file of AS paths is
computed by discarding the prefix column and all the BGP
attributes different from the AS path. Duplicate ASes arising
from prepending [3] are removed in each path. Note that
duplicated paths may be present in the set.

There are many Looking Glass servers on the Internet and
it is very difficult to say which are the most representative.
In order to compare our work with previous results, we have
chosen to use the collection of ten BGP data sets obtained from
Telnet Looking Glass servers already adopted as a test bed
in [2]. Such test beds are periodically collected and publicly
distributed by the authors [15].

For each data set we have constructed a different AS graph
(a partial view of the global AS graph) by using only the
adjacencies contained in the AS paths of the specific data set.
Table I shows the main features of the graphs constructed from
the ten data sets. Note that values of Tables I and IV of [2]
and values computed from data available in [15] (and that are
presented in the aforementioned Table I of this paper) appear
to be slightly different.

Table II shows the results of the experiments. Observe that
for all the partial views, but the one of the University of
Oregon server [16], the ToR problem admits a solution without
invalid paths. In fact, the server of the University of Oregon
is not just a Looking Glass that gives a view of Internet from
a specific point of observation, but it offers an integrated
view obtained from 52 peering sessions with routers spread
on 39 different ASes. This clearly indicates that integrating
information from different points of view makes the problem
much more difficult.

Figure 8 shows six rows extracted from the routing table
of the U. of Oregon dated Apr 18, 2001. Observe that the six

TABLE II

TESTING IF THE TOR PROBLEM HAS A SOLUTION WITHOUT INVALID

PATHS FOR SEVERAL BGP ROUTING TABLES.

AS # AS Name Orientable w/o anomalies
Apr 18, 2001 Apr 6, 2002

1 Genuity yes yes
1740 CERFnet yes not available

3549 Globalcrossing yes yes
3582 U. of Oregon no no
3967 Exodus Comm. yes yes
4197 Global Online J. yes yes
5388 Energis Squared yes yes
7018 AT&T yes yes
8220 COLT Internet yes yes
8709 Exodus, Europe yes yes

paths are exactly those used in Figure 2 to give an example
of an instance of the ToR problem that does not admit an
orientation without invalid paths.

It is worth noting that we have conducted all the experiments
on a PC Pentium III with 1 GB of RAM. Each of the above
experiments required a few seconds of computation time.

IV. COMPUTING THE AS RELATIONSHIPS

In Section III we have seen how problem ToR-D can be
solved efficiently when k = 0, that is when we want to check
if G admits an orientation where all the paths are valid (i.e.,
there are 0 invalid paths). We can do that solving a simpler
problem, called ToR-D-simple.

In this section we deal with the problem of determining
the relationships between ASes in the assumption that ToR-D
admits a solution without anomalies. Essentially, this is a two
steps process. In the first step an orientation that solves ToR-D-
simple is computed. In the second step peering relationships
are discovered by examining the solution computed for ToR-
D-simple.

A. Finding an orientation for ToR-D-simple

If a solution for ToR-D-simple exists, computing it is an
easy task. Since we mapped ToR-D-simple to 2SAT, we
can find a solution to ToR-D-simple by computing a truth
assignment for the boolean variables of the corresponding
2SAT instance. A standard method [12] for computing such
assignment is the following. A function f(v) can be computed
for all the vertices of the graph G2SAT associated with 2SAT
(see Section III-B) such that, for any two vertices u and v, if
there exists a directed path from u to v, then f(u) ≤ f(v).
A true value is assigned to variable x if f(x) > f(x), a false
value otherwise. The satisfiability of 2SAT guarantees that
f(x) 	= f(x).

Function f can be efficiently computed by exploiting the
decomposition of the graph into strongly connected compo-
nents and by computing a special ordering, called topological
sorting [14], on the directed acyclic graph of the components.

Of course, an instance of the problem ToR-D-simple may
admit several different solutions. The structure of the problem
constraints some variables to have the same truth values in all

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Network Next Hop Path
200.1.225.0 167.142.3.6 5056 701 6461 4926 4270 4387 i
200.10.112.0/23 167.142.3.6 5056 701 4926 4926 4926 6461 2914 174 174 174 174 14318 i
204.71.2.0 203.181.248.233 7660 1 5056 701 11334 i
213.172.64.0/19 167.142.3.6 5056 1239 1 1755 1755 1755 1755 3216 13099 i
200.33.121.0 167.142.3.6 5056 1 1239 8151 i
204.71.2.0 144.228.241.81 1239 5056 701 11334 i

Fig. 8. Six rows extracted from the BGP routing table of the U. of Oregon dated Apr 18, 2001. Each orientation of the edges of the corresponding graph
yields at least one invalid path.

the solutions, while other variables may assume any true/false
assignment. Coming back to problem ToR-D-simple, this
means that some edges have a constrained customer-provider
orientation, while others may assume different orientations.

Interestingly, the proposed approach permits to “explore”
the solutions space. Namely, if some knowledge is available on
the customer-provider relationships between ASes, it is easy
to force the solution to respect such constraints. For example,
suppose to know in advance that AS vi is a customer of AS
vj and suppose that in the initial arbitrary orientation edge
(vi, vj) is directed from vi to vj . We can impose that the
solution respects the constraint by adding to the 2SAT formula
associated with Problem ToR-D-simple the clause (xi,j∨xi,j).
Of course, adding constraints to the problem decreases the size
of the solution space and may lead to unsatisfiable instances.

B. Discovering the peering relationships

A solution for the ToR-D-simple problem provides an ori-
entation for all the edges of the AS graph (customer-provider
relationships). However, as described in Section II-B, it is
possible to refine the obtained solution reintroducing peering
relationships. In such a section a sufficient condition has been
given for modifying a directed edge into an undirected edge
still having a solution for ToR-D.

Several different criteria can be adopted to measure the
quality of a solution once peerings are reintroduced. For
example, one could say that a solution is especially interesting
if many peering have been discovered. Unfortunately, it can
be shown that, given a solution for a ToR-D-simple instance,
i.e., with no peerings, the problem of producing a solution for
the corresponding ToR-D instance that maximizes the number
of the peering edges is a hard one.

We prove it using a reduction from the INDEPENDENT-
SET problem, in which you are given a graph with nodes
in N and arcs in A and you are asked to find a subset of
the nodes of size k such that no two nodes of the subset are
adjacent. To build the instance of the ToR-D-simple problem
corresponding to the instance of the INDEPENDENT-SET
problem we introduce an edge (vi, vtop) for each node ni ∈ N
and we introduce a path vi, vtop, vj for each arc (ni, nj) ∈
A. The edges of the ToR-D-simple instance can be directed
toward vertex vtop in order to have a solution with no invalid
path. It can be easily shown that the problem of reintroducing
k peering edges without increasing the number of invalid paths
is equivalent to the problem of finding an independent set of
size k. We omit the details of the proof for the sake of brevity.

V. THE DIFFICULTY OF MINIMIZING PATH ANOMALIES

The ToR problem was conjectured to be NP-complete in [2].
In Section III we have shown that finding a solution with zero
invalid path (provided that it exists) is a tractable problem. In
this section we show that the ToR problem is NP-complete in
the general case, that is, when it does not admit an orientation
without invalid paths. In order to prove that the ToR problem
is NP-hard we reduce the NP-complete problem MAX2SAT
to it.

In the remaining part of this section, following a standard
technique when dealing with optimization problems [11], we
refer to their decision versions. For ToR we already defined in
Section II the ToR-D and ToR-D-simple problems (we will
use the latter one). As for MAX2SAT, its decision version
of MAX2SAT-D can be defined as follows. You are given a
set X of boolean variables and a collection C of disjunctive
clauses, each one of 2 literals, where a literal is a variable or a
negated variable. You are asked to find a truth assignment for
the boolean variables in X so that the number of unsatisfied
clauses of C is at most k, where k is a positive integer.

Given an instance of the MAX2SAT-D problem, we will
produce an instance of the ToR-D-simple problem, such that
an orientation with k invalid paths exists iff an assignment
with k unsatisfied clauses of MAX2SAT-D can be found. For
each variable xi ∈ X we introduce two vertices x′

i and x′′
i .

For each clause l1 ∨ l2 we introduce a path of four vertices as
follows. If l1 is the negated literal of variable xi, then the first
two vertices of the path will be x′′

i and x′
i, otherwise they will

be x′
i and x′′

i . Similarly, if l2 is the negated literal of variable
xj , then the last two vertices of the path will be x′

j and x′′
j ,

otherwise they will be x′′
j and x′

j .
Figure 9 shows an example of an instance of the MAX2SAT-

D problem and the corresponding instance of the ToR-D-
simple problem.

Given an orientation for the edges of the graph, if edge
(x′

i, x
′′
i) is directed from x′

i to x′′
i , then we associate a true

value with the corresponding boolean variable xi, otherwise
we associate a false value. Observe that, given an orientation
for the edges of the graph, if the first edge of the four-vertex
path is directed toward the first vertex of the path, then the
first literal of the corresponding clause is false. Analogously,
if the last edge of the path is directed toward the last vertex
of the path, then the second literal of the clause is false.

If a path is valid, then its first and its last edges are not
simultaneously directed toward the first vertex and the last
vertex, respectively. It follows that, if a path is valid, the
corresponding clause is satisfied. Thus, an orientation for the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

x’1

x’2 x"2

x"1

x’3 x"3

x’4 x"4

Fig. 9. The instance of the ToR-D-simple problem corresponding to the
instance (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) of the
MAX2SAT-D problem.

edges of the graph with k invalid paths corresponds to an
assignment of the boolean variables with k unsatisfied clauses.

Conversely, suppose to have an assignment for the boolean
variables in X that leaves k clauses of the MAX2SAT-D
instance unsatisfied. If variable xi is positive, direct edge
(x′

i, x
′′
i) toward x′′

i , otherwise direct it toward x′
i. Each sat-

isfied clause corresponds to a four vertex path whose first
and last edge are not simultaneously directed toward its first
and last vertices, respectively, and an orientation for the
intermediate edge of the path can be easily found so that the
path is valid. Thus, an assignment for the boolean variables
that leaves k clauses of the MAX2SAT-D instance unsatisfied
corresponds to an orientation of the ToR-D-simple problem
with k invalid paths.

Since it can be shown that the ToR-D-simple problem
belongs to the class NP (it is easy to count the invalid paths
yielded by a given orientation), it follows that the ToR-D-
simple problem is NP-complete.

Observe that, although we used a reduction of the
MAX2SAT-D problem to show the NP-hardness of the ToR-
D-simple problem, an instance of the ToR-D-simple problem
can not be always mapped to an instance of the MAX2SAT-D
problem (for example, when two paths have one internal edge
in common).

VI. HEURISTICS FOR COMPUTING THE AS
RELATIONSHIPS

In Section V we have seen that the ToR-D problem is
computationally hard and in Section III we have seen that, even
if portions of Internet admit a hierarchical structure without
anomalies, when the data set becomes large, such a “strong”
structure does not exist (see, e.g., the AS 3582 in Table II).

This section aims at giving a method for discovering the AS
relationships in a big chunk of Internet with a small number
of invalid paths. Observe that, even if heuristics are known for
solving the MAX2SAT problem (see, e.g., [17]), they cannot
be straightforwardly applied to ToR-D. In fact, maximizing
the number of satisfied clauses of the 2SAT formula does
not necessarily imply maximizing the number of valid paths.
Another approach would be to reduce ToR-D to a problem
called Maximum Number of Satisfiable Formulas, where a
collection of formulas in conjunctive normal form is given,
and the target is to maximize the number of satisfied formulas.
However, that problem has been shown to be not approximable
in [18] and we were not able to find in the literature effective
and efficient heuristics for that problem.

As a reference data set, with the purpose of comparing
our results with previous contributions, we consider the same
portion of Internet taken into account in [2]. Namely, we
consider the union of all the paths of the Telnet Looking
Glasses of Table I (version of Apr 18, 2001). The total number
of paths of the data set is 3, 423, 460, involving 10, 916 ASes.
The graph of the adjacencies between ASes contains 23, 761
edges. We measure the effectiveness of our heuristics against
such quite large data set.

The target of the proposed heuristics is the computation of
a maximal set of paths (subset of the given set of paths) such
that ToR-D with k = 0 admits a solution. A set of paths is
maximal if no path can be added to the set without introducing
anomalies.

A simple strategy for computing a maximal set of paths is
the following. Starting from the empty set, add all the paths
one-by-one, each time testing if the set admits an orientation
without anomalies. The test can be performed in linear time
by exploiting the algorithm presented in Section III. If the
insertion of a path makes the set not orientable, then it is
discarded, otherwise it is added to the set. At the end of the
process we have a maximal set of paths. However, this simple
strategy is unfeasible. In fact we would have to run the testing
algorithm millions of times. Even if each run takes one second,
we could wait a couple of weeks to have the maximal set.

Motivated by the above discussion, we propose a two steps
approach. First, we compute a very large (albeit not maximal)
set of valid paths with an ad-hoc technique. Second, we check
if the discarded paths can be reinserted with the method
described above.

The computation of the initial very large set of valid paths
is performed as follows. Initialize P with the set of all the
paths.

1) Construct the G2SAT graph considering all the adjacen-
cies of P .

2) Set-up the following data structure: for each undirected
edge (vi, vj) of the AS adjacency graph keep the number
of paths traversing (vi, vj); call it covering of (vi, vj).

3) Compute the strongly connected components of G2SAT

(e.g., with the algorithm in [13]).
4) Identify each variable x such that x and x are in the

same strongly connected component of G2SAT.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

5) Select among those variables the variable xi,j whose
corresponding edge (vi, vj) has the smallest covering
and remove all the paths that cover such an edge from P .

Execute steps (1) through (5) until no strongly connected
component contains both the literals of the same variable.

Observe that at each iteration, since we remove all the
paths traversing a specific edge of the AS graph, the literals
associated with such an edge disappear from G2SAT.

In our data set the starting G2SAT graph contains 47, 522
nodes and 375, 100 edges. It contains one strongly connected
component with 2, 156 literals and 12, 570 edges. The other
components contain just one literal. The set of valid paths
computed during the first step contains 3, 423, 460 paths.
During the second step 222, 764 paths have been re-inserted
without causing anomalies. The final maximal set of paths
contains 3, 399, 389 paths.

After computing a maximal set of paths we have computed
an orientation for the edges of the AS graph obtained from
those paths, using the technique illustrated in Section IV. A
fragment of the computed orientation has been used already
in this paper for the example of Figures 4 and 5. Further,
following the experimental guideline of [2] we have done two
types of checks of the quality of such orientation:

1) We checked how many paths of the original ten data
sets are valid and the percentage of invalid paths.

2) We checked how good is the computed orientation
against four additional data sets that were not input of
the heuristic algorithm. Such extra group of data sets
is, again, available from [15] and contains data from
AS1755, AS2516, AS2548, and AS6893.

TABLE III

COMPARISON BETWEEN THE HEURISTICS PRESENTED IN THIS PAPER AND

THE STATE OF THE ART.

AS # AS Name Anomalies % Anomalies %
([2]) (this paper)

1 Genuity 0.65 0.45
1740 CERFnet n.a. 0.36
3549 Globalcrossing n.a. 0.13
3582 U. of Oregon n.a. 0.57
3967 Exodus Comm. n.a. 0.42
4197 Global Online J. n.a. 0.46
5388 Energis Squared n.a. 0.46
7018 AT&T 0.63 0.21
8220 COLT Internet n.a. 0.22
8709 Exodus, Europe n.a. 0.21

1755 Ebone 2.89 1.52
2516 KDDI 8.97 4.95
2548 MaeWest 1.49 0.19
6893 CW 2.92 0.64

Table III shows that the heuristics described above leaves
a very small percentage of invalid paths. In particular, it
performs significantly better, in terms of invalid paths, than
the cutting edge heuristics of [2]. The invalid paths are about
halved for ASes 1, 1755, and 2516, are about one third for
AS 7018, and are one fourth or less for ASes 2548 and 6893.
These results are, in our opinion, even stronger if we consider

that the percentages of anomalies provided by [2] do not count
as invalid Type 2 paths containing two consecutive undirected
edges instead of one [19]. The basis of such relaxation of the
model is that two ASes may have an “indirect peering”, that
is a peer-to-peer relationship through an intermediate one.

Using the condition discussed in Section II-B we have also
found edges that can be made undirected still preserving the
quality of the solution and have found 3, 936 edges that can
be considered as candidates for being peering edges.

It is worth noting that we have conducted all the experiments
with the same platform described in Section III. The above ex-
periment, involving 3, 423, 460 paths, required a computation
time of about 10 hours.

VII. CONCLUSIONS AND OPEN PROBLEMS

In this paper we introduced a novel approach for computing
the relationships between Autonomous Systems starting from
a set of AS paths, so that the number of invalid paths is kept
small. Also, we proved that the corresponding minimization
problem is NP-complete in the general case (as conjectured
in [2]).

Our approach consists of mapping the problem into a 2SAT
formulation, which can be exploited in several ways. For
example, a solution for the 2SAT formulation can be found in
linear time, if it exists, determining a solution to the original
problem without invalid paths. Also, we take advantage of
the theoretical insight gained with the 2SAT formulation
to conceive new heuristics for the general case which we
experimentally prove to be more effective than previously
presented approaches.

Further details on the experiments, the used source
code, and the data sets are available from the Web-
site http://www.dia.uniroma3.it/∼compunet and
in [20].

The classification of AS relationships in the Internet is a
hot research topic. Its relevance is confirmed by the interest
of other research groups on the same subject. In [21] analogous
and independently discovered results concerning the time
complexity of the general problem and the linearity in the
case of all valid paths are shown. However, while such work
puts more emphasys on the approximability of the problem,
we focus more on the engineering and the experimentation of
an effective heuristic approach.

Several problems remain open. We think it is interesting to
understand why the portion of the Internet seen from a single
observation point is very often orientable without invalid paths.
Is that a matter of size or there is a more subtle property that
can be formally studied? Also, the recognition of AS rela-
tionships can probably take advantage of further information
provided by the BGP routing tables, for example, the size of
the prefixes. Can this lead to a prefix-driven formulation of
the problem instead of the as-path driven formulation adopted
until now? Further, it could be interesting to improve existing
tools for the visualization of the AS graph (see, e.g., [22]) in
order to provide information about the relationships between
ASes.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

ACKNOWLEDGMENTS

We are grateful to the authors of [2] for their help. Also,
we would like to thank Andrea Vitaletti and Debora Donato
for interesting conversations.

REFERENCES

[1] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745, Dec
2001.

[2] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing
the internet hierarchy from multiple vantage points,” in Proc. IEEE
INFOCOM 2002, 2002.

[3] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Reading,
MA: Addison-Wesley, 1999.

[4] C. Alaettinoglu, “Scalable router configuration for the internet,” in Proc.
IEEE IC3N, October 1996.

[5] G. Huston, “Interconnection, peering, and settlements,” in Proc. INET,
June 1999.

[6] R. Govindan and A. Reddy, “An analysis of internet inter-domain
topology and route stability,” in Proc. IEEE INFOCOM 1997, April
1997.

[7] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map
discovery,” in Proc. IEEE INFOCOM 2000, March 2000.

[8] W. Theilmann and K. Rothermel, “Dynamic distance maps of the
internet,” in IEEE INFOCOM 2000. Tel-Aviv, Israel: IEEE, March
2000. [Online]. Available: citeseer.nj.nec.com/theilmann00dynamic.html

[9] Z. Ge, D. R. Figueiredo, S. Jaiswal, and L. Gao, “On the hierarchical
structure of the logical internet graph,” in Proc. SPIE ITCom 2001, 2001.

[10] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing
with BGP,” in IEEE INFOCOM 2001, Apr 2001, pp. 547–556.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY: W. H. Freeman,
1979.

[12] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” Information
Processing Letters, vol. 8, no. 3, pp. 121–123, 1979.

[13] K. Mehlhorn, Data Structures and Algorithms. Springer Publishing
Company, 1984, vol. 1-3.

[14] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[15] “Characterizing the internet hierarchy from multiple vantage points,”
http://www.cs.berkeley.edu/∼sagarwal/research/BGP-
hierarchy/.

[16] “University of Oregon RouteViews project,”
http://www.routeviews.org.

[17] U. Feige and M. Goemans, “Approximating the value of two prover
proof systems, with applications to max 2sat and max dicut,” in Proc.
of 3rd Israel Symposium on the Theory of Computing and Systems, 1995,
pp. 182–189.

[18] V. Kann, “On the approximability of NP-complete optimization prob-
lems,” Ph.D. dissertation, Department of Numerical Analysis and Com-
puting Science, Royal Institute of Technology, Stockholm, 1992.

[19] L. Subramanian, personal communication.
[20] G. Di Battista, M. Patrignani, and M. Pizzonia, “Computing the types

of the relationships between autonomous systems,” Dipartimento di
Informatica e Automazione, Università di Roma Tre, Technical Report
RT-DIA-73-2002, July 2002.

[21] T. Erlebach, A. Hall, and T. Schank, “Classifying customer-provider
relationships in the internet,” ETH Zurich, Technical Report TIK-145,
July 2002.

[22] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and M. Pizzonia,
“Visualization of the high level structure of the internet with hermes,”
J. of Graph Algorithms and Applications, vol. 6, no. 3, pp. 281–311,
2002.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Archives of BGP Updates: Integration and Visualization�

Giuseppe Di Battista, Federico Mariani,
Maurizio Patrignani, and Maurizio Pizzonia

Dip. Informatica e Automazione
Università di Roma Tre

Via della Vasca Navale 79, 00146 Roma, Italy
�gdb,mariani,patrigna,pizzonia�@dia.uniroma3.it

Abstract

The possibility of analyzing updates exchanged between
BGP talkers is crucial for several operational and research
purposes. To give a few examples, they can be used to inves-
tigate the stability of specific routes, to monitor the effects of
faults, and to analyze the behavior of the entire network in
the presence of particular events. Several archives of BGP
conversations, such as the Routing Information System of
the RIPE and the Oregon Route Views database, give an
answer to this need for information. We describe a work
that aims at integrating the data from different BGP-update
sources and at presenting such data with graph-based visu-
alization techniques. We address both technological issues
related to the data integration and user-interaction issues
originated from the necessity of visualizing data that change
over time.

1 Introduction

The exploration and visualization of the Internet attracts
an increasing research interest, motivated by the growing
size of the network and the significant impact that connec-
tivity has on social and economic activities.

Contributions in this field can be roughly classified with
respect to the granularity of the data they consider.

For example, Hermes [6, 1] visualizes the information
provided by the Internet Registries about the interconnec-
tions between Autonomous Systems (ASes), showing their
peerings and mutual policies.

�Work partially supported by European Commission - Fet Open project
COSIN - COevolution and Self-organisation In dynamical Networks -
IST-2001-33555; by ”Progetto ALINWEB: Algoritmica per Internet e
per il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Inter-
esse Nazionale; and by “The Multichannel Adaptive Information Systems
(MAIS) Project”, MIUR Fondo per gli Investimenti della Ricerca di Base.

At a more granular level, Mercator [9], Skitter [11],
and Rocketfuel [15] compute maps from data collected
by means of network discovery, showing interconnections
among routers. Another system using traceroutes for prob-
ing the network is described in [5].

In this paper we present BGPlay, a system that shows
the routing at the interdomain level acquired from commu-
nications between BPG-speaking peers [16]. BGPlay in-
tegrates the data from different archives of BGP updates
and presents such data with graph-based visualization tech-
niques.

Currently, BGPlay integrates the BGP updates collected
by the Routing Information Service [3] of the RIPE and
those collected by the Oregon Route Views project [4]. BG-
Play aims at giving a highly intuitive visual representation
of the status of the routing at a specific time, and of its evo-
lution in a given time interval. In order to show such an
evolution the system relies on an animation which shows
how the BGP-paths evolve over time while preserving the
user mental map [14, 7].

BGPlay has been designed to satisfy both operational
and research needs. To give a few examples, it can be used
to investigate the stability of specific routes, to monitor the
effects of faults, and to analyze the behavior of the entire
network in the presence of particular events. Instabilities
and faults of interdomain routing have been the subject of
recent research (see for example [13, 10, 8, 12]).

The paper is organized as follows. In Section 2 the data
sources used by BGPlay are described. The overall archi-
tecture of the system is discussed in Section 3, while Sec-
tion 4 and Section 5 illustrate how data are collected and
visualized. Finally, Section 6 contains our conclusions and
future work.

2 Archives of BGP Data

The Oregon Route Views (ORV) project (see Fig. 1.a)
provides a service for Internet operators to obtain real-time

titto
Appendix 7.5

AS1668

AS7660

AS715

Route Views
router

(a)

RRC00

RRC08

(b)

Figure 1. The architecture of ORV (a) and of
RIS (b).

information about the global routing system from the per-
spectives of several different locations around the Internet.
Currently, the BGP Route Views router has more than ��
multi-hop eBGP peering sessions with routers of Internet
service providers.

ORV collects, without providing any transit service, the
BGP updates coming from its peers. Such updates allow
to reconstruct the evolution of the best routes (at the AS
level) adopted by each peer. ORV data archives contain both
snapshots of the global routing information base of ORV at
different instants of time and sequences of BGP updates.
The data are made available in the MRT [2] format.

The Routing Information Service (RIS) of the RIPE (see
Fig. 1.b) collects historical information about Internet rout-
ing by using Remote Route Collectors (RRC) at different
locations around the world. Such information is integrated
into a comprehensive view. An RRC of the RIS is a BGP
speaking router that only collects BGP routing information.
The collected raw data is regularly transferred to a central
storage area at the RIPE NCC in Amsterdam. Each RRC is

denoted by a string with format RRCxx, where xx is a two
digit number. Essentially, each RRC behaves analogously
to the ORV router.

The RIS offers to the users several query facilities. For
example, the BGP Routing Hot Spot Utility generates lists
of prefixes, originating from a specified AS, for which high
BGP announcement activity has been observed by some
RRC. Also, the ASInuse facility determines when an AS-
number last appeared in the global routing table collected
by the RIS.

In this paper, we are interested in a simpler RIS query,
that can be performed using the Search by Prefix utility. It
allows to specify a prefix, a time interval, and a set of RRCs
in order to search the RIS database. It outputs a list of BGP
updates recorded by the selected RRCs in the prescribed
time interval. It also outputs the status of the Local Routing
Information Base (Loc-Rib) for the selected prefix in an in-
stant of time that is “related” to the prescribed time interval.

3 System Architecture

The architecture of BGPlay is based on the following
main choices.

� The user interacts with the system by means of a
browser. A query identifies a time interval and a prefix
to be monitored. The data sources to be used can be
selected in a set of possible alternatives.

� The results of the query, i.e. the changes in the BGP
routing observed during the time interval, are visu-
alized by an “animation.” Such animation relies on
Graph Drawing techniques [7]. When the animation is
started, a graph-like representation shows the routing
at the beginning of the interval. During the animation
the graph changes according to the observed BGP up-
dates.

� The BGP data exploited to answer the user queries are
partly fetched on-line at the moment they are needed
and are partly locally stored. Namely, since the RIS
provides a Web query facility we access those data on-
line. Also, since the Route Views Project does not have
a Web query facility for historical data, we periodically
copy part of them locally. Currently, because of lim-
itations on the available storage space, we maintain a
copy of a limited (the most recent) period of time.

� The service is based on a client-server architecture,
where the server computes the result of queries and
the client is an applet running on the user’s browser.
We decided of using an applet instead of producing on
the server standard jpeg or gif figures because of the
graphical complexity of the animation.

Presentation
Engine

GUI Wrapper

Retriever
ORV

RIS

Local ORV
archive

Query
Manager

RIS

ORV

Query

Animation

CLIENT SERVER

Figure 2. The system architecture.

Figure 2 illustrates the main components of the architec-
ture:

Graphic User Interface. Provides the user with several
tools for interacting with the visual representation of
the routing information. For example: a time panel
shows the time location of the most important events in
the selected time interval, animation buttons allow to
step over the events, and an event display gives all the
available details about the currently visualized event.

Presentation Engine. Computes the layouts of the graphs
representing the evolution of the routing. Further, is
able to change such graph layout according to the rout-
ing events, in such a way that the user always per-
ceives “smooth” variations. It exploits Graph Drawing
methodologies and techniques.

RIS Wrapper. Queries the RIS Search by Prefix utility and
retrieves the corresponding results in terms of BGP
routing tables and updates.

ORV Retriever. Periodically retrieves routing tables and
updates available at the ORV raw data archives in the
MRT format. Updates the Local ORV Archive remov-
ing the oldest data.

Local ORV Archive. A relational database (currently,
MySQL technology) storing the ORV data. Observe
that, while all the RIS data refer to the UTC (Coordi-
nated Universal Time), the ORV data refer to its local
time. In BGPlay we refer to the UTC.

Query Manager. Gets a query description from the User
Interface, drives the RIS Wrapper, accesses the Local
ORV Archive, computes the result of the query, and
delivers the result to the Presentation Engine.

An analysis of the workload and of the generated traffic
lead us to a decomposition of the system in which the Pre-
sentation Engine is located on the client side, together with
the Graphical User Interface.

4 Query Processing

In order to answer a query of the client, the Query Man-
ager has to retrieve the BGP updates falling in the speci-
fied time interval. As mentioned in Section 3 two types of
retrieval are involved: retrieval from the local database of
ORV updates and on-line retrieval, performed by the RIS
Wrapper, from the RIS Service.

The scenario is more precisely depicted in Fig. 3, where
the starting and ending instants of the time interval are
called �� and ��, respectively. The purpose of the Query
Manager is to compute:

� the status of the ORV RIB in ��;

� the status of the RIS RIB in ��; and

� the sequence of updates collected by ORV and RIS be-
tween �� and ��.

Unfortunately, it is unlikely to have at disposal the two
aforementioned RIBs at time ��. Also, the possibilities of
retrieving such information from the two data archives are
quite different.

On one side, ORV offers a snapshot of its RIB every
(about) two hours. Hence, we have to determine which is
the last available ORV RIB before ��. Once such RIB has
been obtained (suppose it corresponds to a snapshot taken at
time �� � ��), we perform the following operations. First,
the rows of the RIB corresponding to the given prefix � are

t1 t2

t

now

Routing Information System availability (on−line)

Oregon Route Views availability (local cache)

User query interval

RIS and ORV RIBs at t

ORV last RIB before t

RIS last RIB berfore t

1

1

1

Figure 3. Available and computed RIBs.

extracted. Second, the updates occurring in the time interval
��� �� are taken into account in order to compute the portion
of the RIB corresponding to � at time ��.

On the other side, the situation for RIS is more complex.
Namely, as shown in Fig. 4, a query sent to the on-line RIS
interface involving the time interval � �

�
� ��

�
yields two types

of data:

� the updates collected between ��
�

and ��
�

and

� the RIS RIB at time 23:59 of the day in which � �
�

falls.

Hence, it is not possible, for the Query Manager, to sim-
ply activate the RIS Wrapper with a query interval such that
��
�
� �� and ��

�
� ��.

Because of the above discussion, the Query Manager
asks the RIS Wrapper to perform a query with time interval
��
�
� ��

�
, where ��

�
� �� and ��

�
is the time 23:59 of the day pre-

ceding the one in which �� falls. Afterwords, analogously to
what happens for ORV, the RIB is filtered saving only the
portion concerning �. Then, the updates occurring in the
time interval ��

�
� �� are taken into account in order to com-

pute the portion of the RIB corresponding to � at time ��.

5 Updates Visualization

One of the purposes of BGPlay is to visualize BGP up-
dates. However, the semantics of an update is essentially in
the changes it induces in the routing. Hence, our approach
relies on two types of visualization techniques. First, we
exploit methods to visualize the status of the routing at a
given instant of time. Second, we exploit techniques that
allow the user to perceive how an update brings the routing
from an initial status to a consequent one.

5.1 The Routing Graph

If we focus the attention on a prefix, the status of the
routing at a given time for that prefix consists of a set of
AS-paths, each representing the best route at that time to
reach the prefix from a certain AS. Such a status is effec-
tively represented with a routing graph. A routing graph is
a decorated graph in which each vertex is an AS and edges
are the pairs of ASes that appear consecutively in at least
one of the paths. Each edge is labeled with the set of paths
traversing it.

The AS-paths representing the status of the routing are
provided to the Presentation Engine by the Query Manager.
In general, part of them come from ORV and represent the
routes selected by the ORV peerers to reach the prefix. Part
of them come from RIS and represent the routes selected by
the RRC peerers to reach the prefix. The overall information
conveyed by the representation is the routing of the Internet
traffic flowing toward the specified prefix at the AS level.

Visualizing a routing graph is not an easy task. In fact,
even if large portions of it look like a tree, it may contain cy-
cles and dense subgraphs. Further, some vertices may have
many incident edges and a single edge may be traversed by
several paths.

In designing the Presentation Engine we have identified
the following requirements:

� The attention of the user should mainly be focused on
the AS originating the prefix (target AS).

� An AS should appear in the drawing at a geometric dis-
tance from the target AS that is roughly proportional to
the number of (AS-)hops separating them.

� Each single AS-path must be fully identified, even if
traversing edges that are traversed by other paths. Ob-

2t’

23:59
RIS

returned RIB

1t’
RIS t

RIS query interval

(24 hours, from 00:00 to 23:59)
day i day i+1

Figure 4. RIBs returned by the RIS.

serve that this requirement would be easy to meet if the
graph was a tree; in fact in this case there is just one
tree path from each AS to the target AS. The presence
of cycles makes the problem more complex.

In order to compute drawings of the routing graphs satis-
fying the above requirements we used a “spring embedder.”
It consider the graph as a system of bodies (vertices) and
forces acting between the bodies. Such forces can either at-
tract or repel the bodies. The system is left free to oscillate
until an equilibrium is reached. We made the choice to use
the following types of forces:

� A repelling force is set between each pair of ASes.

� An attractive force is set between each pair of ASes
connected by an edge.

� To damp the oscillations, the effect of the forces is de-
creased with the time. Essentially, this is obtained by
progressively augmenting the “viscosity” in the sys-
tem.

We also fixed the position of the target AS at the cen-
ter of the area. Paths are represented with different col-
ors and edges traversed by several paths are displayed using
as many lines as the number of paths traversing that edge,
where each line is colored with the color of the correspond-
ing path.

Fig. 5 shows a drawing produced by BGPlay. It is
about a prefix announced by the GARR AS (AS137). It
clearly shows that the route collectors are reached by the
announcements of AS137 through three main directions.
Namely, part of the paths flow through AS3549 (Global-
crossing), other paths through AS1299 (TeliaNet), while
others through AS20965 (GEANT). Fig. 6 shows the rout-
ing for AS7018.

5.2 Sequences of Updates

Obviously, the visualization of the routing graph before
and after a BGP update occurred is sufficient to convey the
information of the update. However, it is essential for the
two consecutive visualizations to be “similar”, while the
routing change should be apparent to the user.

Consider a BGP announcement and the corresponding
AS-path ��. Let ��� be the target AS and suppose that
the ending ASes of �� are ��� and ��� . Two cases are
possible: either another AS-path � with the same pair of
ending ASes was already in the routing graph or not. In
the first case the user should perceive that the traffic flow
from ��� to ��� is changing its route. In the second case
it is important to make clear that a new source of traffic is
becoming visible from ��� .

A route change from � to �� involves several possi-
ble changes in the routing graph. Let us compare � �
���� � ���� ���� � � � � ��� � ���� and �� � ���� �
���

�
� ���

�
� � � � � ���

� � ����. We can split � and ��

into sub-paths as follows. Let ��� be the first AS of �

that is equal to some AS (say �� �

�) of ��. We split �

and �� into the sub-paths ����� � � � � ����, ����� � � � � ����
and ��� �

�
� � � � � ���

��, ����

� � � � � � ���

��, respectively. We
can repeat the above split process on the two sub-paths
����� � � � � ���� and ��� �

� � � � � � ���

��, until they are no
longer decomposable. Such a process yields a decompo-
sition of the two original paths into an equal number of sub-
paths pairwise starting and ending on the same vertices.

The Presentation Engine performs a graphic “morphing”
where each sub-path in which � is decomposed is mapped to
the corresponding sub-path of � �. Three cases are possible:

1. the two sub-paths have equal length

2. the sub-path of � is longer than the sub-path of � �, and

3. the sub-path of � is shorter than the sub-path of � �.

Figure 5. A drawing produced by BGPlay rapresenting the routing for prefix 193.204.0.0/15 (AS137).

In all the above cases we introduce in the routing graph a
chain of additional “dummy” vertices and move them from
the original sub-path to the position of the new sub-path.
However, in case 2 some dummy vertices are “absorbed”
into the same vertex, while in case 3 some dummy vertices
are “created” from the same vertex. Of course, some ASes
of the original graph may disappear since they are no longer
traversed by any path and some ASes are created because
they are in �� and were not in the graph.

Consider now a BGP withdrawal. It is managed by the
Presentation Engine as follows. First, the involved path
is highlighted, to attract the attention of the user, then the
edges traversed by the path change their labels an, in case,
removed.

6 Conclusions and Future Work

We have presented BGPlay, a system designed to visu-
alize the evolution of the routing involving a given prefix
at the Autonomous Systems level (BGP level). BGPlay
is able to show the BGP events occurred in a given time
interval through an animation illustrating the correspond-
ing changes in the routing graph. BGPlay is available at
http://www.dia.uniroma3.it/�compunet.

Future work will mainly focus on the following issues.

� We plan to test the effectiveness of new visualization
methods, alternative to those based on the display of a

routing graph.

� We would like to provide the user with more large-
scale visualization facilities, that allow to track the
evolution of the routing paths of several prefixes (not
necessarily originated by the same AS) at the same
time.

� We are interested in integrating new data sources, both
publicly available and provided by private organiza-
tions.

Acknowledgements

We would like to thank Fabrizio Lombardozzi for im-
plementing a preliminary version of the system, called
Flapviewer.

References

[1] Hermes.
http://www.dia.uniroma3.it/�hermes/.

[2] Multithreaded Routing Toolkit (MRT) Project [Online].
http://www.mrtd.net.

[3] Routing information service of the ripe.
http://www.ripe.net/ripencc/pub-services/

np/ris/.
[4] University of Oregon RouteViews project.

http://www.routeviews.org.

Figure 6. Flows of traffic for AS7018 represented by BGPlay.

[5] S. Branigan, H. Burch, B. Cheswick, and F. Wojcik. What
can you do with traceroute? IEEE Internet Computing,
Sept./Oct. 2001.
http://computer.org/internet/v5n5/index.htm.

[6] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and
M. Pizzonia. Visualization of the high level structure of the
internet with hermes. J. of Graph Algorithms and Applica-
tions, 6(3):281–311, 2002.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

[8] L. Gao and J. Rexford. Stable internet routing without global
coordination. In Measurement and Modeling of Computer
Systems, pages 307–317, 2000.

[9] R. Govindan and H. Tangmunarunkit. Heuristics for inter-
net map discovery. In IEEE INFOCOM 2000, pages 1371–
1380, Tel Aviv, Israel, March 2000.

[10] T. Griffin and G. T. Wilfong. An analysis of BGP conver-
gence properties. In SIGCOMM, pages 277–288, 1999.

[11] B. Huffaker, D. Plummer, D. Moore, and k claffy. Topology
discovery by active probing. Technical report, Cooperative
Association for Internet Data Analysis - CAIDA, San Diego
Supercomputer Center, University of California, San Diego,
2002.

[12] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed
internet routing convergence. In SIGCOMM, pages 175–
187, 2000.

[13] C. Labovitz, G. R. Malan, and F. Jahanian. Internet rout-
ing instability. IEEE/ACM Transactions on Networking,
6(5):515–528, 1998.

[14] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. J. Visual Lang. Comput.,
6(2):183–210, 1995.

[15] N. Spring, R. Mahajan, and D. Wetherall. Measur-
ing isp topologies with rocketfuel. In Proceedings of
ACM/SIGCOMM ’02, Aug. 2002.

[16] J. W. Stewart. BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley, Reading, MA, 1999.

	tutti.pdf
	Introduction
	Indices for Graph Clustering
	Coverage
	Performance
	Intra- and Inter-cluster Conductance

	Graph Clustering Algorithms
	Markov Clusteringfuturelet next {} (MCLfuturelet next)
	Iterative Conductance Cuttingfuturelet next {} (ICCfuturelet next)
	Geometric MST Clusteringfuturelet next {} (GMCfuturelet next)

	Experimental Evaluation
	Random Uniform Clustered Graphs
	Technical Details of the Experiments and Implementation
	Computational Results

	Conclusion
	Dynamic Analysis of the AS Graph (Draft of CR).pdf
	Introduction
	Motivations
	Methodology
	Terminology
	Data Collection
	Observed Indices
	Abstract Views
	Cleaning the Graph
	Clustering

	Experiments and Results
	Evaluation of Reduction Techniques
	Validation of Cleaning and Filtering
	Significance of Clustering

	Baselines and Trends
	Short-Term Analysis -- Anomalies

	Conclusions

	Computing the Type of Relationships between ASes (infocom).pdf
	INFOCOM 2003
	Return to Main Menu

