

COSIN

IST–2001-33555

COevolution and Self-organization
In dynamical Networks

A library of software tools for
performing measures on large networks

Deliverable Number: D13

Delivery Date: March 2004

Classification: Public

Partner owning: CR2 (UDRLS)

Contact authors: Debora Donato, Luigi Laura,

 Stefano Leonardi, Stefano Millozzi.

Project Co-ordinator: Guido Caldarelli (INFM) guido.caldarelli@roma1.infn.it,
 Istituto Nazionale Fisica per la Materia

Partners: CR2 (UDRLS) Università “La Sapienza”, Italy;
 CR3 (UB) Universitat de Barcelona, Spain;
 CR4 (UNIL) Université de Lausanne, Switzerland;
 CR5 (ENS) École Normale Supérieure, Paris, France;
 CR7 (UNIKARL) Universität Karlsruhe, Germany;
 CR8 (UPSUD) Université de Paris Sud, France.

Project funded by the European
Community under the “Information
Society Technologies” Programme (1998-
2002)

Abstract

The Webgraph is the graph whose nodes are the (static) HTML pages and the (directed)
edges are the hyperlinks between pages. In order to study the statistical and topological
properties of the Webgraph and to study models for the Webgraph we need to generate and
measure graphs with more than one billion edges. We developed a collection of routine that
are able to deal with massive graphs stored in files in secondary memory. In particular, our
routines can generate graphs according to many of the models presented in the literature;
we also provide programs that can measure these graphs (the ones generated according to
known models) as well as real samples of the webgraph. We present a ”multifile” format
to represent graphs in secondary memory; we include routines that convert some graph file
formats from/to our .ips multifile format. Binaries and source code of all the program of
this library are freely available; to compile them the gcc compiler version >= 2.9 and linux
operating system are needed. The library has been tested with graphs up to 2 billion edges.

COevolution and Self-organization In Dynamical Networks IST-2001-33555 1

Contents

1 Introduction 2

2 Algorithms for analyzing and generating Web graphs 2
2.1 Algorithms for generating massive Webgraphs 2
2.2 PageRank . 4
2.3 Disjoint bipartite cliques . 4
2.4 Strongly connected components . 6

3 Data representation and multifiles 7

4 List of procedures 7
4.1 Graph generators . 11
4.2 Graph measurers . 14
4.3 Search algorithms . 17
4.4 Bow-tie discovering . 18
4.5 Format converters . 19
4.6 Miscellaneous . 20

5 Example 21

References 23

1

COevolution and Self-organization In Dynamical Networks IST-2001-33555 2

1 Introduction

The Webgraph is the graph whose nodes are the (static) HTML pages and the (directed)
edges are the hyperlinks between pages. This has been the subject of extensive attention
because of the many applications that benefited from the analysis of the link structure of the
Web, primarly Web mining. One example is represented by the algorithms for ranking pages
such as Page Rank [2] and HITS [6]. Link analysis is also at the basis of the sociology of
content creation, and the detection of structures hidden in the web (such as bipartite cores
of cyber communities and webrings [8]).

The experimental study of the statistical and topological properties is at the core of this
discipline and at the basis of the validation of stochastic graph models for the Web.

To study and analyze the webgraph we need to deal with massive graph. In this deliverable
we present a collection of algorithms and related implementations that are able to generate
and measure massive graphs in secondary memory. For further readings concerning properties
of the Webgraph, see [4], and a detailed comparison studio over different Webgraph models
can be found in [3].

This deliverable is organized as follows: next section presents the external and semi-
external memory algorithm we developed in order to generate and analyze Webgraphs. In
Section 3 we briefly describe the file formats that we use to represent both the graphs and
the results of the measurement processes. Section 4 describe in details our routines. Some
examples of the usage are presented in Section 5.

2 Algorithms for analyzing and generating Web graphs

In this section we present the external and semi-external memory algorithms we developed
and used in this project for analyzing massive Webgraphs and their time performance. More-
over, we will present some of the algorithmic issues related to the large scale simulation of
stochastic graph models.

For measuring the time performance of the algorithms we have generated graphs according
to the Copying and the Evolving Network model. In particular, we have generated graphs
of size ranging from 100,000 to 50M vertices with average degree 7, and rewired a number
of edges equal to 50% and 200% of the vertices. The presence of cycles is fundamental for
both computing SCCs and PageRank. This range of variation is sufficient to assess the
asymptotic behavior of the time performance of the algorithms. In our time analysis we
computed disjoint bipartite cliques of size (4, 4), the size for which the computational task is
more difficult.

2.1 Algorithms for generating massive Webgraphs

In this section we present algorithms to generate massive Webgraphs. We consider the
Evolving Network model and the Copying model. When generating a graph according to a
specific model, we fix in advance the number of nodes N of the simulation. The outcome of
the process is a graph stored in secondary memory as list of successors.

Copying model. The Copying model (Kumar et al. [7]) is parameterized with a copying
factor α. Every new vertex u inserted in the graph by the Copying model is connected with

2

COevolution and Self-organization In Dynamical Networks IST-2001-33555 3

d edges to previously existing vertices. A random prototype vertex p is also selected. The
endpoint of the lth outgoing edge of vertex u, l = 1, . . . , d, is either copied with probability α
from the endpoint of the lth outgoing link of vertex p, or chosen uniformly at random among
the existing nodes with probability 1− α.

A natural strategy would be to generate the graph with a batch process that, alternately,
i) generates edges and writes them to disk and ii) reads from disk the edges that need to be
“copied”. This clearly requires an access to disk for every newly generated vertex.

In the following we present an I/O optimal algorithm that does not need to access the
disk to obtain the list of successors of the prototype vertex. We generate for every node
1 + 2 · d random integers: one for the choice of the prototype vertex, d for the endpoints
chosen at random, and d for the values of α drawn for the d edges. We store the seed of the
random number generator at fixed steps, say every x generated nodes.

When we need to copy an edge from a prototype vertex p, we step back to the last time
when the seed has been saved before vertex p has been generated, and let the computation
progress until the outgoing edges of p are recomputed; for an appropriate choice of x, this
sequence of computations is still faster than accessing the disk. Observe that p might also
have copied some of its edges. In this case we recursively refer to the prototype vertex of p.
We store the generated edges in a memory buffer and write it to disk when complete.

Evolving Network model. Albert, Barabasi and Jeong [1] presented this model in which,
at every discrete time step, a new vertex is introduced in the graph, and connects to existing
vertices with a constant number of edges. A vertex is selected as the end-point of an edge with
probability proportional to its in-degree, with an appropriate normalization factor (this is
called preferential attachment). This model shows a power law distribution over the in-degree
of the vertices with exponent roughly -2 when the number od edges that connect every vertex
to the graph is 7. To generate the end-point of an edge with probability proportional to the
in-degree of a vertex, the straightforward approach is to keep in main memory a N -element
array i[] where we store the in-degree for each generated node, so that i[k] = indegree(vk)+1
(the plus 1 is necessary to give to every vertex an initial non-zero probability to be chosen
as end-point). We denote by g the number of vertices generated so far and by I the total
in-degree of the vertices v1 . . . vg plus g, i.e. I =

∑g
j=1 i[j]. We randomly (and uniformly)

generate a number r in the interval (1 . . . I); then, we search for the smallest integer k such
that r ≤ ∑k

j=1 i[j]. For massive graphs, this approach has two main drawbacks: i.) We need
to keep in main memory the whole in-degree array to speed up operations; ii.) We need to
quickly identify the integer k.

To overcome both problems we partition the set of vertices in
√

N blocks. Every entry
of a

√
N -element array S contains the sum of the i[] values of a block, i.e. S[l] contains the

sum of the elements in the range i[ld√Ne+1] . . . i[(l +1) · d√Ne]. To identify in which block
the end-point of an edge is, we need to compute the smallest k′ such that r ≤ ∑k′

j=1 S[j]
The algorithm works by alternating the following 2 phases:

Phase I. We store in main memory tuples corresponding to pending edges, i.e. edges that
have been decided but not yet stored. Tuple t =< g, k′, r − ∑k′−1

j=1 S[j] > associated with
vertex g, maintains the block number k′ and the relative position of the endpoint within the
block. We also group together the tuples referring to a specific block. We switch to phase II
when a sufficiently large number of tuples has been generated.

3

COevolution and Self-organization In Dynamical Networks IST-2001-33555 4

Phase II. In this phase we generate the edges and we update the information on disk. This
is done by considering, in order, all the tuples that refer to a single block when this is moved
to main memory. For every tuple, we find the pointed node and we update the information
stored in i[]. The list of successors is also stored as the graph is generated.

In the library implementation we use multiple levels of blocks, instead of only one, in
order to speed up the process of finding the endpoint of an edge. An alternative is the use
of additional data structures to speed up the process of identifying the position of the node
inside the block.

2.2 PageRank

The computation of PageRank is expressed in matrix notation as follows. Let N be the
number of vertices of the graph and let n(j) be the out-degree of vertex j. Denote by M
the square matrix whose entry Mij has value 1/n(j) if there is a link from vertex j to vertex
i. Denote by [1

N]N×N the square matrix of size N ×N with entries 1
N . Vector Rank stores

the value of PageRank computed for the N vertices. A matrix M ′ is then derived by adding
transition edges of probability (1−c)/N between every pair of nodes to include the possibility
of jumping to a random vertex of the graph:

M ′ = cM + (1− c)× [
1
N

]N×N

A single iteration of the PageRank algorithm is

M ′ ×Rank = cM ×Rank + (1− c)× [
1
N

]N×1

We implement the external memory algorithm proposed by Haveliwala [5]. The algorithm
uses a list of successors Links, and two arrays Source and Dest that store the vector Rank
at iteration i and i+1. The computation proceeds until either the error r = |Source−Dest|
drops below a fixed value τ or the number of iterations exceed a prescribed value.

Arrays Source and Dest are partitioned and stored into β = dN/Be blocks, each holding
the information on B vertices. Links is also partitioned into β blocks, where Linksl, l =
0, ..., β−1, contains for every vertex of the graph only those successors directed to vertices in
block l, i.e. in the range [lB, (l + 1)B − 1]. We bring to main memory one block of Dest per
time. Say we have the ith block of Dest in main memory. To compute the new PageRank
values for all the nodes of the ith block we read, in a streaming fashion, both array Source
and Linksi. From array Source we read previous Pagerank values, while from Linksi we
have the list of successors (and the out-degree) for each node of the graph to vertices of block
i, and these are, from the above Pagerank formula, exactly all the information required.

2.3 Disjoint bipartite cliques

In [8] an algorithm for enumerating disjoint bipartite cliques (i, j) of size at most 10 has been
presented, with i being the fan vertices on the left side and j being the center vertices on
the right side. The algorithm proposed by Kumar et al. [8] is composed of a pruning phase

4

COevolution and Self-organization In Dynamical Networks IST-2001-33555 5

that consistently reduces the size of the graph in order to store it in main memory. A second
phase enumerates all bipartite cliques of the graph. A final phase selects a set of bipartite
cliques that form the solution. Every time a new clique is selected, all intersecting cliques
are discarded. Two cliques are intersecting if they have a common fan or a common center.
A vertex can then appear as a fan in a first clique and as a center in a second clique.

In the following, we describe our semi-external heuristic algorithm for computing disjoint
bipartite cliques. The algorithm searches bipartite cliques of a specific size (i, j).

Two n-bit arrays Fan and Center, stored in main memory, indicate with Fan(v) = 1
and Center(v) = 1 whether fan v or center v has been removed from the graph. We denote
by I(v) and O(v) the list of predecessors and successors of vertex v. Furthermore, let Ĩ(v)
be the set of predecessors of vertex v with Fan(·) = 0, and let Õ(v) the set of successors of
vertex v with Center(·) = 0. Finally, let T [i] be the first i vertices of an ordered set T .

We first outline the idea underlying the algorithm. Consider a fan vertex v with at least
j successors with Center(·) = 0, and enumerate all size j subsets of Õ(v). Let S be one such
subset of j vertices. If | ∩u∈S I(u)| ≥ i then we have detected an (i, j) clique. We remove
the fan and the center vertices of this clique from the graph. If the graph is not entirely
stored in main memory, the algorithm has to access the disk for every retrieval of the list of
predecessors of a vertex of O(v). Once the exploration of a vertex has been completed, the
algorithm moves to consider another fan vertex.

In our semi-external implementation, the graph is stored on secondary memory in a
number of blocks. Every block b, b = 1, ..., dN/Be, contains the list of successors and the
list of predecessors of B vertices of the graph. Denote by b(v) the block containing vertex
v, and by B(b) the vertices of block b. We start by analyzing the fan vertices from the first
block and proceed until the last block. The block currently under examination is moved to
main memory. Once the last block has been examined, the exploration continues from the
first block.

We start the analysis of a vertex v when block b(v) is moved to main memory for the first
time. We start considering all subsets S of Õ(v) formed by vertices of block b(v). However,
we also have to consider those subsets of Õ(v) containing vertices of other blocks, for which
the list of predecessors is not available in main memory. For this purpose, consider the next
block b′ that will be examined that contains a vertex of Õ(v). We store Õ(v) and the lists of
predecessors of the vertices of Õ(v) ∩B(b) into an auxiliary file A(b′) associated with vertex
b′. We actually buffer the access to the auxiliary files. Once the buffer of block b reaches a
given size, this is moved to the corresponding auxiliary file A(b). In the following we abuse
notation by denoting with A(b) also the set of fan vertices v whose exploration will continue
with block b.

When a block b is moved to main memory, we first seek to continue the exploration from
the vertices of A(b). If the exploration of a vertex v in A(b) cannot be completed within block
b, the list of predecessors of the vertices of Õ(v) in blocks from b(v) to block b are stored into
the auxiliary file of the next block b′ containing a vertex of Õ(v). We then move to analyze
the vertices B(b) of the block. We keep on doing this till all fan and center vertices have
been removed from the graph. It is rather simple to see that every block is moved to main
memory at most twice.

The core algorithm is preceded by two pruning phases. The first phase removes vertices
of high degree as suggested in [8] since the objective is to detect cores of hidden communities.
In a second phase, we remove vertices that cannot be selected as fans or centers of an (i, j)

5

COevolution and Self-organization In Dynamical Networks IST-2001-33555 6

clique.

Phase I. Remove all fans v with |O(v)| ≥ 50 and all centers v with |I(v)| ≥ 50.

Phase II. Remove all fans v with |Õ(v)| < i and all centers with |Ĩ(v)| < j.

When a fan or a center is removed in Phase II, the in-degree or the out-degree of a
vertex is also reduced and this can lead to further removal of vertices. Phase II is carried
on few times till only few vertices are removed. Phases I and II can be easily executed in
a streaming fashion as described in [8]. After the pruning phase, the graph of about 200M
vertices is reduced to about 120M vertices. About 65M of the 80M vertices that are pruned
belong to the border of the graph, i.e. they have in-degree 1 and out-degree 0.

We then describe the algorithm to detect disjoint bipartite cliques.

Phase III.

1. While there is a fan vertex v with Fan(v) = 0

2. Move to main memory the next block b to be examined.

3. For every vertex v ∈ A(b) ∪B(b) such that |Õ(v)| ≥ j

3.1 For every subset S of size j of Õ(v), with the list of predecessors of vertices in S
stored either in the auxiliary file A(b) or in block b:

3.2 If |T = ∩u∈S Ĩ(u)| ≥ i then

3.2.1 output clique (T [i], S)
3.2.2 set Fan(·) = 1 for all vertices of T [i]
3.2.3 set Center(·) = 1 for all vertices of S

2.4 Strongly connected components

It is a well-known fact that SCCs can be computed in linear time by two rounds of depth-
first search (DFS). Unfortunately, so far there are no worst-case efficient external-memory
algorithms to compute DFS trees for general directed graphs. We therefore apply a re-
cently proposed heuristic for semi-external DFS [11]. It maintains a tentative forest which
is modified by I/O-efficiently scanning non-tree edges so as to reduce the number of cross
edges. However, this idea does not easily lead to a good algorithm: algorithms of this kind
may continue to consider all non-tree edges without making (much) progress. The heuristic
overcomes these problems to a large extent by:

• initially constructing a forest with a close to minimal number of trees;

• only replacing an edge in the tentative forest if necessary;

• rearranging the branches of the tentative forest, so that it grows deep faster (as a
consequence, from among the many correct DFS forests, the heuristic finds a relatively
deep one);

6

COevolution and Self-organization In Dynamical Networks IST-2001-33555 7

• after considering all edges once, determining as many nodes as possible that have
reached their final position in the forest and reducing the set of graph and tree edges
accordingly.

The used version of the program accesses at most three integer arrays of size N at the same
time plus three boolean arrays. With four bytes per integer and one bit for each boolean,
this means that the program has an internal memory requirement of 12.375 ·N bytes. The
standard DFS needs to store 16 · avg − degree · N bytes or less if one does not store both
endpoints for every edge. Therefore, under memory limitations, standard DFS starts paging
at a point when the semi-external approach still performs fine.

3 Data representation and multifiles

A first and natural problem when one deals with massive data in secondary memory is the
size limit of a single file1. All our routine operate on a multifile, i.e. we represent a single
graph with more than one file. More precisely we use one .info file, that gives us information
about the nodes, one or more .prec files that contain data about the predecessors of each
node and one or more .succ files that, similarly, contain data about the successors of each
node. We refer to all these file related to a single graph as the .ips multifile. We considered
also the following graph file formats:

• Text In this file format we represent a graph as the list of its edges; the file is in plain
text, and every edge is noted with the numbers of the nodes it connects.

• Dimacs This is the dimacs graph format; details can be find at

• Edges This file (or multifile) is simply a list of edges, where each edge is represented
by the identifier of the source and ending node, written in binary.

• Succ In this file there there is first the identifier of a node, followed by the number of
successors, followed by the identifiers of the successor nodes.

Figures 1 to 6 provide the representations of an example graph in all the formats described
above.

4 List of procedures

In this section we detail the programs included in the library. We divide them in six cat-
egories: generators, measurers, search algorithms, bow-tie discovering, file converters and
miscellaneous. All the procedures are implemented using external algorithms, except for two
programs (bowtie, semiext_dfs) that are semiexternal. Indeed bowtie requires 2 bits for
every node in the original graph; semiext dfs uses 12 bytes and 1 bit for each node (For
details about semiexternal dfs algorithms see [11]).

1This limit can be changed but we preferred, for portability reasons, to use a multifile format.

7

COevolution and Self-organization In Dynamical Networks IST-2001-33555 8

0

3

1
2

4

5 6

Figure 1: Example graph

Indegree

32
 b

it
32

 b
it

64
 b

it

64
 b

it

…….

outdegree

Binary format

32 bitSucc
(sorted*)

643231

04 #5015#1014212#10120210#20

Punt pred

Punt succ

…….32 bitPred
(sorted*)

531010

Node 0

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

not meaningfull value

(00000000000000000000000000000011)2

* Pred list and succ list for each node are sorted

………….

Figure 2: Ips format

8

COevolution and Self-organization In Dynamical Networks IST-2001-33555 9

06615044130223211320

Source node

successors

32 bit 32 bit 32 bit 32 bit …….

Number of successors

(00000000000000000000000000000010)2
Binary format

Figure 3: Succ format

2 65143311030

Source node

32 bit 32 bit …….

Destination node

(00000000000000000000000000000011)2
Binary format

edge

Figure 4: Edges format

9

COevolution and Self-organization In Dynamical Networks IST-2001-33555 10

Source node

Destination node

text format

edge (text)
0 3

0 1

1 3

3 4

1 2

5 6

Figure 5: Text format

Source node

Destination node

text format

edge (text)

d example

e 0 3

e 0 1

e 1 3

e 3 4

e 1 2

e 5 6

comment

Type

Figure 6: Dimacs format

10

COevolution and Self-organization In Dynamical Networks IST-2001-33555 11

4.1 Graph generators

Copying Model

This program generates a graph according to the copying model proposed by Kumar et al.
[7]. The usage is as follows:

copymodel memory num nodes numSucc alpha seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
alpha copying parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Network Growth Model

This program generates a graph according to the Network Growth model proposed by Pen-
nock et al. [10]. The usage is as follows:

netgrowthmodel memory num nodes numSucc beta seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
alpha uniform choice parameter (in the range 0-100)
beta uniform choice parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Evolving Network Model

This program generates a graph according to the Evolving Network model proposed by Albert
et al. [1]. The usage is as follows:

evolvingmodel memory num nodes numSucc seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Multi-Layer Model

This program generates a graph according to the Multi-Layer model proposed by Laura et
al. [9]. We distinguish six different cases that depend on the random graph generator that is
used to model every single layer. Therefore we have:

1. Copying Model. This generates a graph according to the Multi-Layer Model in which
the single layer is modelled according to the Copying Model of Kumar et al. [7]. The
usage is as follows:

11

COevolution and Self-organization In Dynamical Networks IST-2001-33555 12

layermodel memory -LC|-LC nd num nodes numSucc numLayers layersPerEdge
alpha seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
alpha copying parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Note that instead of the -LC switch, you can use the -LC nd that allows nodes in
a single layer not necessarily to be distinct ones

2. Evolving Network Model. This generates a graph according to the Multi-Layer
Model in which the single layer is modelled according to the Evolving Networks of
Albert et al. [1] The usage is as follows:

layermodel memory -LB|-LB nd num nodes numSucc numLayers layersPerEdge
seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Note that instead of the -LB switch, you can use the -LB nd that allows nodes in
a single layer not necessarily to be distinct ones

3. Mixed: Copying Model and Evolving Network Model. This generates a graph
according to the Multi-Layer Model in which the single layer is modelled using a mixed
strategy between the Copying Model of Kumar et al. [7] and the Evolving Networks of
Albert et al. [1]. A node either copies the link from the vertex prototype p, as in the
Copying Model, or points a node with the preferential attachment, as in the Evolving
Network model. The usage is as follows:

12

COevolution and Self-organization In Dynamical Networks IST-2001-33555 13

layermodel memory -LCB|-LCB nd num nodes numSucc numLayers layersPerEdge
alpha seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
alpha copying parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Note that instead of the -LCB switch, you can use the -LCB nd that allows nodes in a
single layer not necessarily to be distinct ones

4. Network Growth Model. This generates a graph according to the Multi-Layer
Model in which the single layer is modelled according to the Network Growth Model
of Pennock et al. [10]. The usage is as follows:

layermodel memory -LN1|-LN1 nd num nodes numSucc numLayers layersPerEdge
beta seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
beta uniform choice parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output multifile (MUST include the string %d)

Note that instead of the -LN1 switch, you can use the -LN1 nd that allows nodes
in a single layer not necessarily to be distinct ones

5. Network Growth Model with random parameter. This generates a graph ac-
cording to the Multi-Layer Model in which the single layer is modelled according to the
Copying Model of Kumar et al. [7]. The usage is as follows:

13

COevolution and Self-organization In Dynamical Networks IST-2001-33555 14

layermodel memory -LN2|-LN2 nd num nodes numSucc numLayers layersPerEdge
betamin betamax seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
betamin minimum value of the uniform choice parameter (in the range 0-100)
betamax maximum value of the uniform choice parameter (in the range 0-100)
seed seed for the random number generator
output file name% name of the output file (MUST include the string %)

Note that instead of the -LN2 switch, you can use the -LN2 nd that allows nodes
in a single layer not necessarily to be distinct ones

6. The model is randomly chosen amongst the ones described above. This
generates a graph according to the Multi-Layer Model in which the single layer is
modelled according to the Copying Model of Kumar et al. [7]. The usage is as follows:

layermodel memory -RND|-RND nd num nodes numSucc numLayers layersPerEdge
alphaCopying alphaMixed beta seed nameOutputMultifile%d
memory memory available (MB)
numnodes number of graph’s nodes
numSucc number of successor of every node (constant)
numLayers total number of layers
layersPerEdge number of layers per edge
alphaCopying copying parameter of the Copying model (in the range 0-100)
alphaMixed copying parameter of the Mixed model (in the range 0-100)
beta uniform choice parameter (in the range 0-100)
seed seed for the random number generator
nameOutputMultifile%d name of the output file (MUST include the string %d)

Note that instead of the -RND switch, you can use the -RND nd that allows nodes in a
single layer not necessarily to be distinct ones

4.2 Graph measurers

In this section we detail the routine that measure properties of an input graph, represented
as always in our multifile .ips format.

Degree

This program computes the indegree and outdegree distribution of the input graph, in the IPS
format. The indegree and outdegree distributions are stored in two files named as specified in
the command line options, respectively with the suffices .in and .out. The usage is therefore
as it follows:

14

COevolution and Self-organization In Dynamical Networks IST-2001-33555 15

degree memory nameInputMultifile%dfileNameTemp%d nameOutputMultifile%d
memory memory available (MB)
nameInputMultifile%d is the name of the input multifile (MUST include the string
%d)
fileNameTemp%d is the name of a temporary multifile (MUST include the string %d)
nameOutputMultifile%d the name of the output file
(MUST include the string %d)

pagerank

This routine computes the PageRank on the input graph. The output are two file that
contain, respectively, the distribution of pagerank values and, for each node, its pagerank
value. The residual value is the difference of the absolut value of two consecutive iterations
of the algorithm. The command line usage is as follows:

pagerank memory nameInputMultifile%dc residual maxIter fileTxtOutDistr%d
fileTxtOutNodes%d colums

memory memory available (MB)
nameInputMultifile%d name of the input multifile
residualT threshold value of residual; if residual is less then this value, then the
program halts
c PageRank parameter: probability to remain in the page (the value is in the range 0
up to 1; suggested is 0.85)
maxIter maximum number of iterations allowed
fileTxtOutDistr%d name of the output (text) multifile where the distribution of
pagerank values are stored (MUST include the string %d)
fileTxtOutNodes%d name of the output (text) multifile where pagerank values are
stored (MUST include the string %d)
colums specify the info to write in fileTxtOutNodes%; possible values are N,I,O,P,-
where

• N: column with the number of the node

• I: column with the indegree value of the node

• O: column with the outdegree value of the node

• P: column with the pagerank value of the node

• -: nothing is written

correlation

This routine computes the degree correlation functions of the input graph. We can define
eight distinct of such quantities that give us the correlation between the in-degree (out-
degree) of the followers (predecessors) as a function of the in-degree (out-degree) distribution;
we have all the combination {I|O}{f |p}{I|O} where the first letter ({I|O}) means that we

15

COevolution and Self-organization In Dynamical Networks IST-2001-33555 16

are plotting the average in-degree (or out-degree), the second({f |p}) that we are looking at
the followers (or predecessors), and the last one ({I|O}) that we are drawing the plot as a
function of the in-degree (or the out-degree). The usage is as follows:

correlation memory neighbors degree degNeighbors nameInputMultifile%d
nameTemporaryMultifile%d nameOutputTextMultifile%d

memory memory available (MB)
neighbors -pred|- succ specify that the analysis is based on the predecessors or
successors
degree -indeg|-outdeg|-node if we want the results collected by the indegree, the
outdegree or for each node
degNeighbors -indeg|-outdeg if we are interested in the indegree or outdegree of the
predecessors or successors (as specified in neighbors)
nameInputMultifile%d name of the multifile of the input graph (MUST include the
string %d)
nameTemporaryMultifile%d name of a temporary multifile (MUST include the string
%d)
nameOutputTextMultifile%d name of the output file, that is a text multifile (MUST
include the string %d)

clique

This routine measure the number of clique, i.e. the number of bipartite cores, of the input
graph. The command line options are as follows:

clique memory nameInputMultifile%d nameTemporaryMultifile%d
nameOutputFile {i, j}+

memory memory available (MB)
nameInputMultifile%d name of the multifile of the input graph (MUST include the
string %d)
nameTemporaryMultifile%d name of a temporary multifile (MUST include the string
%d)
nameOutputFile name of the output file
{i, j}+ (one or more) type of bipartite cores to look for; examples are: 3, 5 or 3, 5 3, 6
or 3, 5 2, 6 3, 8.

16

COevolution and Self-organization In Dynamical Networks IST-2001-33555 17

4.3 Search algorithms

bfs

This utility performs the Breath First Search of a graph. The command line options are as
follows:

bfs memory nameInputMultifile%d nameTempMultifile%d
nameOutputMultifile%d startingNode directionOption

memory memory available (MB)
nameInputMultifile%d name of the multifile of the input graph (MUST include the
string %d)
nameTempMultifile%d name of a temporary multifile (MUST include the string %d)
nameOutputMultifile%d name of the output multifile (MUST include the string %d)(*)
startingNode starting node of the bfs
directionOption -FORWARD — -BACKWARD — -BOTH(**) to specify the direc-
tion of visit

(*) The basic multiFile contains all the visited nodes, grouped by level. (Different
levels are separated by -1) The second multiFile with extension ’.report’ contains report
informations (**)if the direction option is BOTH, the edges are considered undirected.

semiext dfs

Utility that performs a Depth Firsts Search of a graph using a semiexternal algorithm. For
each node at least (12 + 1/8) bytes are required. The command line options are as follows:

semiext dfs memory inputGraphMultiFile%d outputSccMultifile%d
[Options]...

memoryavailable memory in MB
inputGraphMultiFile%d name of the multifile of the input graph (MUST include the
string %d)
outputSccMultifile%d output dfs forest in adjacency list format (MUST include the
string %d)
Options:

-b, -backward to execute a backward visit
-f, -output f nodes are listed in the order they are found the first time
instead of the order they finish their DFS calls
-force executes the visit even if the main memory is not enough
-n, -sourceNode=<N> performs a DFS starting from node <N>
-o, -file ord=<fileOrd%d> visit the DFS forest following the nodes order
specified in <fileOrd%d>
r, -roundsMax=<num> numbers of rounds after which the utility stops
-t, -iterationsMax=<num> max number of iterations to do
-m, -minutesMax=<minutes> max elapsed time after which the utility stops

17

COevolution and Self-organization In Dynamical Networks IST-2001-33555 18

4.4 Bow-tie discovering

bowtie

This program searches for the Bow-Tie regions. It uses a semi-external algorithm that requires
at least 2 bits for each graph node. The command line options are as follows:

bowtie [Options]... memory graphFile%d fileSetSCC%d

memory available memory in MB
graphFile%d name of the multifile of the input graph (MUST include the string %d)
fileSetSCC%d output multiFile name; it contains the nodes in the CORE (as adjacency
list)(MUST include the string %d)
Options:

-force performs the visit even if the main memory is not enough (slower: it uses
swap memory)
-r, -random[=<NumIterations>] searches CORE using <NumIterations>
random nodes
-f, -file=<nodesFile%d> searches CORE using all the nodes stored in

<nodesFile%d>
-s, -seed=<semeRandom> specifies the seed of the random generator (it must be
used with -random option)
-I, -IN=<fileSetIN%d> computes all the nodes that reach the CORE
-O, -OUT=<fileSetOUT%d> computes all the nodes that are reached from the
CORE
-T, -TENDRILS=<fileSetTENDRILS%d> computes TENDRILS and TUBES
regions
-D, -DISC=<fileSetDISC%d> computes DISCONNECTED region
-b, -bits saves nodes of each region (IN,OUT,TENDRILS,DISCONNECTED)
as bit vector and not as a list of nodes (default)
-a, -all saves all the computed SCCs in <fileSetSCC%d> and not only the
bigger one
-p, -percentMax=<perc> minimum dimension of acceptable CORE (percent of
nodes)
-n, -numSCCMax=<num> maximum number of SCCs to consider
-m, -minutesMax=<minutes> time limit of computation

scc.script

This script performs Bow-Tie measurements and calculates SCCs in the graph. It uses
./temp_scc directory to store additional files used in the process. The command line options
are as follows:

18

COevolution and Self-organization In Dynamical Networks IST-2001-33555 19

./scc.script memory IPS graph%d output SCC%d

memory available RAM in MB
input graph%d input graph multifile name (MUST include the string %d)
output SCC%d output SCC in adjacency list format (MUST include the string %d)

This utility creates five multifiles that contain nodes of each bow-tie region. (INset%d,
OUTset%d, DISCset%d, TENDRILSset, TENDRILSset.tubes, DISCset%d)

4.5 Format converters

As we have seen in section 3 we considered five different file formats:

ips Our multifile format.

succ For every node, the number of successors followed by the successors.

edges A list of edges in binary file (32 bit each node).

text A list of edges in a text file.

dimacs The Dimacs graph format [?].

We provide eight script that are able to convert our .ips multifile from/to any other file
type.

Ips2xxx converters:

ips2text memory -deleteSource|-saveSource nameInputMultifile%d
nameOutputFile
ips2succ memory -deleteSource|-saveSource nameInputMultifile%d
nameOutputFile
ips2edges memory -deleteSource|-saveSource nameInputMultifile%d
nameOutputFile
ips2dimacs -deleteSource|-saveSource memory nameInputMultifile%d
nameOutputFile

memory memory available (MB)
-deleteSource|-saveSource specify whether to delete or keep the input file
nameInputMultifile%d name of the multifile of the input graph (MUST include the
string %d)
nameOutputFile FULL name (including the extension) of the of the output file

Xxx2ips converters:

19

COevolution and Self-organization In Dynamical Networks IST-2001-33555 20

text2ips memory -deleteSource|-saveSource nameInputfile
nameOutputMultifile
succ2ips memory -deleteSource|-saveSource nameInputMultifile
nameOutputMultifile%d
edges2ips memory -deleteSource|-saveSource nameInputMultifile
nameOutputMultifile%d
dimacs2ips memory -deleteSource|-saveSource nameInputfile
nameOutputMultifile%d

memory memory available (MB)
-deleteSource|-saveSource specify whether to delete or keep the input file
nameInputFile name of the file of the input graph
nameInputMultiFile%d name of the multifile of the input graph (MUST include the
string %d)
nameOutputMultiFile%d name of the output multifile (MUST include the string %d)

4.6 Miscellaneous

subgraphrand

This routine, given a multifile (in the .ips format) in input, representing a graph G = (V, E),
creates the subgraph G′ induced by a random selection of the nodes. More formally, a random
subset V ′ ⊆ V is chosen; if v1, v2 ∈ V ′ and the edge e1,2 = (v1, v2) is in E, the edge e1,2 is
E′. It follows the command line usage:

subgraphrand memory -RU|-RI maxIterations nameInputMultifile%d
nameOutputMultifile%dnumNodesInSubgraph seed

memory memory available (MB)
-RU|-RI specify whether to select the nodes of the subgraph with a uniform (-RU) or
indegree based (-RI) distribution probability
maxIterations specify the maximum number of iterations to randomly extract the set
V ′; we suggest not to exceed the value 10
nameInputMultifile%d name of the multifile of the input graph (.ips format) (MUST
include the string %d)
nameOutputMultifile%d name of the multifile of the output graph (.edges format)
(MUST include the string %d)
numNodesInSubgraph the (expected) number of nodes of the subgraph
seed the seed for the random number generator

rewiring

This routine allow to modify an input graph by i) inverting the direction of randomly selected
edges, or ii) changing the successor in randomly selected edges, or iii) by adding new edges
to the graph. The usage is as follows:

1. Inverting the direction of randomly selected edges. The usage is as follows:

20

COevolution and Self-organization In Dynamical Networks IST-2001-33555 21

rewiring -IE -deleteSource|-saveSource nameInputMultifile%d
probInversion seed nameOutputMultifile%d

-deleteSource|-saveSource specify whether to delete or keep the input file
nameInputMultifile%d name of the input multifile (.edges format) (MUST include the
string %d)
nameOutputFile%d name of the output multifile (.edges format) (MUST include the
string %d)
probInversion probability (in the range 0− 100) of inverting an edge
seed

2. Changing the successors in randomly selected edges. Command line options are the
following:
rewiring -CE -deleteSource|-saveSource nameInputMultifile%d
probChangingSucc seed nameOutputMultifile%d

-deleteSource|-saveSource specify whether to delete or keep the input file
nameInputMultifile%d name of the input multifile (.edges format) (MUST include the
string %d)
nameOutputMultifile%d name of the output multifile (.edges format) (MUST include
the string %d)
probChangingSucc probability (in the range 0− 100) of changing the successor
seed the seed for the random number generator

3. Adding new edges. It follows the command line usage:
rewiring -AE -deleteSource|-saveSource nameInputMultifile%d m seed
nameOutputMultifile%d

-deleteSource|-saveSource specify whether to delete or keep the input file
nameInputMultifile%d name of the input multifile (.edges format) (MUST include the
string %d)
nameOutputMultifile%d name of the output multifile (.edges format) (MUST include
the string %d)
m number of edges to be added
seed the seed for the random number generator

5 Example

In this section we present an example of usage of our library.
We want to generate a graph based on the evolving network model, with 10000 nodes. We

also want to compute in/outdegree distribution, cliques 2,3 and Pagerank values distribution
on the generated graph.

We assume that the current directory contain the binary files of the library and the
computer has 100MB RAM.

The commands are the following:

21

COevolution and Self-organization In Dynamical Networks IST-2001-33555 22

1. With the evolvingmodel routine, we generate a graph in edges format with 10000
nodes and 7 successors per node. We choose 1234567 as the value for the seed and
edges.%d as the name of the output multifile.
./evolvingmodel 100 10000 7 1234567 edges.%d

2. We perform the conversion from the .edges format multifile to the .ips format with the
script edges2ips (we recall that the graph measurers works with input file in the .ips
format)
./edges2ips 100 edges.%d graph.%d

3. We use the degree routine to compute the indegree/outdegree distribution (using -distr
option to calculate the distribution); the output file name is distr degree.%d.txt, a text
multifile.
./degree 100 -distr graph.%d temp.%d distr degree.%d.txt

4. We compute the clique (2,3) with the following command
./cliques 100 graph.%d temp.%d 2,3

5. Last, we compute the pagerank distribution using the pagerank utility (with parame-
ters: c=0.85, residual=0.00002, max iterations=50).
./pagerank 100 graph.%d 0.85 0.00002 50 distr.%d.txt nodes.%d.txt -

22

COevolution and Self-organization In Dynamical Networks IST-2001-33555 23

References

[1] R. Albert, H. Jeong, and A.L. Barabasi. Nature, (401):130, 1999.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engines.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[3] G. Caldarelli, P. De Los Rios, L. Laura, S. Leonardi, and S. Millozzi. A study of
stochastic models of the webgraph. Technical Report 04-03, DIS - University of Rome
La Sapienza, 2003.

[4] D. Donato, L. Laura, S. Leonardi, and S. Millozzi. Large scale properties of the web-
graph. European Journal of Physics B, 2004. To appear.

[5] Taher H. Haveliwala. Efficient computation of pagerank. Technical report, Stanford
University, 1999.

[6] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1997.

[7] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.
Random graph models for the web graph. In Proc. of 41st FOCS, pages 57–65, 2000.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging
cyber communities. In Proc. of the 8th WWW Conference, pages 403–416, 1999.

[9] L. Laura, S. Leonardi, G. Caldarelli, and P. De Los Rios. A multi-layer model for the
webgraph. In On-line proceedings of the 2nd International Workshop on Web Dynamics.,
2002.

[10] D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover, and C.L. Giles. Winners don’t
take all: Characterizing the competition for links on the web. Proc. of the National
Academy of Sciences, 99(8):5207–5211, April 2002.

[11] J.F. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external depth first search on
directed graphs. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, 2002.

23

