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Abstract 
 
 

Complex network found in nature and society show lack of characteristic 
scales and have grown following rules that depend on the behavior of single 
nodes, not on the whole structure of the network. This is what makes many 
complex networks to be viewed as self-organized critical systems. These 
aspects are made evident usually in the form of power-law distributions of 
node connectivities; however, some other properties, as the size distribution 
of community sizes, have become quite important. On the other hand, 
simple self-organizing network models that can explain the characteristics of 
observed data are still necessary. This is in fact the goal of two of the works 
conducted by the consortium: one is a model of the evolution of the Internet 
at the Autonomous System level based on competition and adaptation; and 
the second one is a model of signalling networks for which the complex 
pattern of connexions is an essential ingredient for the emergence of 
complex dynamics. Finally, we have also focused on the self-organization of 
node properties keeping fixed the topology of the network, related to well-
known models of neural networks. 
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INTRODUCTION 
 
The relation between self-organization and criticality received a great interest in the past 
decade since the pioneering work of Bak, Tang, and Wiesenfeld [1] that introduced the 
concept of self-organized criticality. Extremely simple models following its own rules 
are able to develop, in a self-organized way, into a complex statistical behaviour where 
there are no characteristic time or length scales, resembling those of well known physical 
properties of critical phenomena. For recent books on that subject see [2-4].  
 
The models described in the previous paragraph were models embedded in fixed 
connectivity patterns. However, in the last years it has been shown that i) complex 
networks are everywhere around us; ii) they have grown in a self-organized way; iii) they 
show criticality in the sense of wide lack of characteristic scales. 
 
Along the current project we have followed different lines that are related to the concept 
of self-organized criticality: 
1.- Introducing new characteristics, although this line is related to Deliverable D04, of 
the networks that are scale-free. In particular, many social networks show distributions of 
community sizes that are power-law 
2.- Introducing new models of network growing, that based only on the information 
available to the nodes, are able to develop complex patterns as observed in particular 
cases of social or biological networks.  
3.- Introducing a model that describes accurately the evolution of the Internet by means 
of simple ideas of competition and adaptation. 
4.- Showing that a model of neural networks, where nodes self-organize their synapses, is 
more efficient when the connectivity distribution is scale-free. 
 
These lines are described in detail in the following sections. 
 

HALLMARK OF SELF-ORGANIZATION IN COMPLEX 
NETWORKS 
 
One of the goals of the new science of networks corresponds to the correct statistical 
characterization. Before the study of complex networks formed by thousands of nodes 
and links, the standard characterization of networks came from the field of social 
networks, where the main concern were to establish the role played by certain nodes in 
the global performance of the whole network. Nevertheless, when dealing with very large 
networks, the focus is more on the statistical properties of the components than on special 
roles. Thus, since the pioneering works of Watts and Strogatz [5] and Barabasi and 
Albert [6], the attention turned to compute statistical magnitudes such as the average 
length between nodes, average of different individual properties, distributions of 
properties as connectivities, and so on.  
 
Along the present project, there have been several efforts in characterizing complex 
networks from a mathematical point of view, which has been the subject of deliverable 
D04. Nevertheless, there is point in this characterization that connects in a natural way 
with self-organization in critical systems. In most of the reported networks (natural, 
social, or technological) the degree distribution follows a power-law, which is a clear 



indication of criticality; and since, these networks have grown by means of simple rules, 
they are also self-organized.  
 
The contribution of the project, as was reported in D04 is the analysis of the size 
distribution of community sizes [7,8,9]. Some networks that showing non-power law 
distributions of connectivities show, nevertheless, power law distributions of community 
sizes and topological self-similarity. Because of the analogy of this observation with this 
in river networks, where there exists a principle of optimization [10], it suggests that 
there could exist and underlying mechanism in the formation and evolution of social and 
natural networks.  

MODELS OF NETWORK GROWING 
 
Again, from the field of statistical physics one of the main contributions to complex 
networks has been the construction of very simple models that, although their simplicity, 
are able to reproduce the main features of complex networks. Thus, we could say that the 
first attempts where again those from Watts and Strogatz (small-world model) [5] and 
Barabasi and Albert (preferential attachment) [6].  
 
Along this line the contribution of our project has been to introduce models that explain 
some features of complex networks, in particular of some social networks. 
 
In [11] it was introduced a model in which hidden variables that were used to tag the 
vertices can determine completely the topological properties of the network, in particular 
degree correlations. Later on, we have focused on the specific features of social networks 
as compared to other networks appearing in nature or in technological fields: a large 
clustering coefficient, positive degree correlations, and community structure. By 
constructing a model based on the concept of social distance, which is in turn related to 
the location of the nodes in some “social space”, we obtain some analytical results than 
are in very good agreement with a particularly large non-bipartite network, the Pretty-  
Good-Privacy web of trust [12].  
 
Another contribution has been the construction of a self-organized model of collaboration 
networks. Aga in, a simple model with very simple rules is able to reproduce the specific 
features of this type of networks, in particular, the power law degree distribution. We can 
also find some analytical results, which compare with computer simulations and with 
available empirical data on real collaboration networks: movie-actor collaboration 
network, scientific collaboration networks, and board of directorships [13].  
 

INTERNET EVOLUTION MODEL 
 
The general approximation of networks as isolated systems, although possibly 
appropriate in some cases, must be overcame if we want to describe in a proper way 
complex systems which not generate spontaneously but self-organize within a medium in 
order to perform a function. Many networks evolve in an environment to which they 
interact and which usually provide the clues to understand functionality. Therefore, rules 
defined on the basis of internal mechanisms, such as preferential attachment that act 
internally at the local scale to connect nodes through edges, are not enough. When 



analyzing the dynamics of network assembly, the interlock of its constituents with the 
environment cannot be systematically obviated. 
 
With the aim of approaching applicability and taking into consideration the arguments 
exposed above, we have proposed a new growing weighted network model[14]. The 
dynamical evolution is driven by growth, competition for resources and adaptation to the 
environment in order to maintain functionality in a demand and supply equilibrium, key 
mechanisms which may be relevant in a wide range of self-organizing systems, in 
particular those where functionality is tied to communication or traffic. The medium in 
which the network grows and to with it interacts can be represented by a pool of elements 
which, at the same time, provide resources to the constituents of the network and demand 
functionality, say for instance users in the case of the Internet or passengers in the case of 
any transportation network. Competition is here understood as a struggle between 
network nodes for new resources and is modelled as a rich get richer or preferential 
attachment process. For their part, this captured elements demand functionality so that 
nodes must adapt in order to perform efficiently. This adaptation translates into the 
creation of weighted links between nodes. 
 
This externally driven growing weighted network model provides deeper insights on the 
understanding of the dynamical processes driving the network assembly of self-
organizing complex systems. In particular, for the Internet at the Autonomous System 
level, it nicely reproduces most of the observed topological features offering at the same 
time an explanation to them. 
 

EMERGENCE OF COMPLEXITY IN SIGNALLING NETWORKS  
 
A variety of physical, social and biological systems generate complex fluctuations with 
correlations across multiple time scales. Intriguingly, in physiologic systems these long-
range correlations are altered with disease and aging [15,16]. Such correlated fluctuations 
in living systems have been attributed to the interaction of multiple control systems, 
however, the mechanisms underlying this behaviour remain unknown . 
 
We have shown that correlated fluctuations characterized by 1/f scaling of their power 
spectra can emerge from networks of simple signalling units [17].  We find that the 
generation of such long-range correlated time series requires: i) a complex topology with 
a discrete and sparse number of random links between units, ii) a restricted set of 
nonlinear interaction rules, and iii) the presence of noise.  Moreover, we find that 
changes in one or more of these properties leads to degradation of the correlation 
properties.  These findings may help in elucidating the genesis of complex signals in 
physiology and their alterations with age and disease [15,16]. 
 

SELF-ORGANIZATION OF NODE PROPERTIES 
 
Another line of research that fits into the present deliverable is the study of the 
performance of neural automata with complex patterns of connectivity. In particular, in 
[18] it is shown that the capacity to store and retrieve binary patterns is higher for 
attractor neural networks with scale-free topology than for highly random-diluted 
Hopfield networks with the same number of synapses. Moreover, the performance of 



scale-free networks increase with the exponent of the power- law distribution of 
connectivities, which show the important role that in this physical mechanism is played 
by the hubs (the nodes with the highest number of links) of the network. 
 
In another contribution [19], the effect of dynamic synapses in scale free network 
topologies is considered. Again, a power- law distribution of connectivities makes the 
system to outperform diluted networks, in the sense that networks are more robust and 
efficient in the retrieval of information. 
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