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Abstract 
The study of the state of the art for a new field of research such the one of 
the growing networks is a crucial task in order to keep updated the scientific 
challenges of a research project. Here we present some analysis of the field 
as perceived by the project members as well as the opinion of the major 
experts worldwide as collected during our midterm conference at month 18.  
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• INTRODUCTION 
 
After an initial boost, the scientific production about complex networks has apparently 
reached a steady-state. The observation of the cond-mat archive (http://xxx.lanl.gov) 
gives a rough measure of this: the number of submitted preprints whose abstract includes 
the words "network" or "graph" were 46 in the last 12 months (March 04), whereas 60 
have been submitted in 2004, and 65 in 2003. For a comparison, such papers were as 
many as 214 in 2000.  
 
Network research, in recent times, has been focussing on deeper analysis of networks 
structure, with new approaches in real data surveys and in mathematical models able to 
reproduce them.  Recent empirical studies concerned mainly social networks, that is, 
networks built by human interactions. Moreover, new models for complex networks have 
been introduced, in order to reproduce the features of real networks where growth and 
preferential attachment (believed to be responsible of the power law degree distribution) 
are absent. Other features of real networks such as the clustering have also been studied, 
having relevant practical applications. Finally, the heterogeneity of the interactions has 
been considered, by the phenomenological study of weighted networks as well as the 
construction of a new model for complex weighted networks. 
 
In the following we will present the main results obtained in literature in the last two 
years (2002-2003) during the first period of the life of COSIN. Some of these results 
have been obtained within the project by the people of the consortium. For the others we 
tried to import within the consortium the most valuable ideas and approaches by looking 
for collaboration and support with the rest of the community.  After the presentation of 
these results, we also report the results of a virtual round table held in Rome for our 
midterm meeting.   
 



• THE MOST RECENT TOPICS 
 

o Social Networks 
 

Social networks are built by human interactions. Such networks arise because of many 
mechanisms. Collaboration produce complex networks, a phenomenon well known since 
decades1. The study of scientific collaboration networks, where scientists are nodes 
connected by co-authorships of scientific literature, has been one of the most studied 
instance of social network, since data are well standardized and widely available. 
Similarly, other examples of interactions have been studied, including sexual contacts, 
opinion sharing and economic exchanges: all these cases display complex features, that 
is, a short network diameter (the average distance between two nodes) and a scale-free 
distribution of the degree P(k), that is, the frequency P(k) of nodes with k links follows a 
power-law behavior  

P(k) ~ k-γ. 
 
 

 
Figure 1: A particular situation  where knowledge on social networks and communities 

detection are needed in order to solve the problem. 
 

Recently, surveys carried on collaboration networks2,3,4 (authors linked by co-
authorships), communication networks (Internet users exchanging e-mail messages)5,6,7 
and markets (economic interactions connecting market agents)8,9,10, have confirmed that 
also social networks display complexity in the degree distribution P(k). 

  
Figure 2: A collection of e-mails exchanged in the University of Tarragona, different 
colours refer to different Departments. On the right the result of a taxonomical 
representation of the different communities as obtained with the Newman-Girvan 
Algorithm (From A. Arenas  et al. ) 



 
Moreover, as it has been verified by simulation, opinion formation models such as the 
Sznajd model11, when set on a scale-free network instead of a regular lattice, produce 
results compatible with observations of real situations12. 
This suggests that the modelization of human interactions by scale-free graphs13 is 
reasonable. 

 
Figure 3 A network of correlation in stock prices at NYSE (From G. Bonanno  et al. ) 

 
o Static Models of Networks  

 

Mechanisms generating complex features in networks (above all, the power-law degree 
distribution) have been deeply studied in the previous years, focussing mainly on 
evolving networks, whose size grows with time. This caused a very rapid development of 
the scientific field at its start. A seminal paper by A.-L. Barabási et al.14 introduced the 
idea that growth and preferential attachments were necessary to the occurrence of fat tails 
in the degree distribution. 
 
Nowadays, such approach is no more a priority: growing networks with various 
additional mechanisms have been introduced and reproduce almost any the parameters 
measured in real networks. Nevertheless, the hypothesis of a dynamically evolving 
network is not always verified in reality.  
Therefore, a number of scientists are now looking for network models displaying a scale-
free distribution of the degree without network growth, since this could be more 
appropriate to represent a number of real network instances. 
Many papers have shown that this is possible indeed. A class of static models, based on 
random intrinsic fitness, have been introduced, simulated and analytically studied15-20. 
Not only is the degree distribution correctly reproduced by such model: in addition, other 
typical relations found in social networks are consistent with such model, such as a 
positive correlation between connected nodes' degrees20. This characteristics is called 
"assortative mixing" in the sociologists' literature, meaning that individuals with similar 
properties tend to be connected with high probability.  
 

o Communities and Clustering 
 

Measurements and exact results concerning the clustering patterns of networks mainly 
concern the occurrence of regular motifs21-24 and their correlations15,25,26. 
However, many social and information networks, such as the World Wide Web, turn out 
to be approximately partitioned into communities of irregular shape: for example, web 
pages focusing on similar topics are strongly mutually connected and have a weaker 



linkage to the rest of the Web. The design of methods to partition a graph into several 
meaningful highly inter-connected components have then become a compelling 
application of graph theory to biological, social and information networks27-29. 
 
Detecting the community structure in information networks allows one to mine 
information in a more efficient way, narrowing the exploration of a network as large as 
the World Wide Web (about 109 nodes) to a limited portion of it.  When used in the 
analysis of large collaboration networks, such as company or universities, communities 
reveal the informal organization and the nature of information flows through the whole 
system30,31. 
 
For this reason, algorithms able to find communities in large networks could have a 
strong scientific and technological impact. Methods have been introduced to solve this 
problem32-37, with different approaches.  
 
Two main classes of algorithms exist: communities in networks can be identified by 
recursively splitting the whole original graph. In this case, links are progressively 
removed until disconnected components corresponding to different clusters appear. Links 
to be removed are usually chosen according to their centrality, that is, the fraction of 
shortest paths passing through each of them32,36. 
 
Alternatively, other authors study the spectral properties of the adjacency matrix or 
related ones. These methods are often inspired by the spectral analysis of stochastic 
processes such as Markov chains. As shown in references33,34, the structure of the 
eigenvectors associated to the largest eigenvalues reveal how nodes can be optimally 
clustered, according to different criteria. 
 
 
 

o Weighted networks 
 
While complex networks are usually characterized by their topological complexity, they 
also often display a large heterogeneity in the capacity and intensity of the connections. 
In the Internet or in the Web, in ecosystems, or in the world-wide airport network, the 
strength of interactions varies greatly. This diversity in the weights of the interaction 
adds a complexity which cannot be overlooked in the study and description of these 
networks. New models of complex networks explaining this heterogeneity are therefore 
necessary. 
 
In this context, a first phenomenological study37 has analyzed two typical examples of 
complex weighted networks. The first example is a prototype of large infrastructure 
network: the airline connection network. The second one  is the scientific collaboration 
network which can be considered as a good proxy for social networks. In both cases, it is 
possible to assign a weight to each link and in the airline network example, the weight is 
the number of available seats (per week) for a given direct connection between two 
airports. New appropriate metrics have also been defined, combining weighted and 
topological observables, in order to characterize the complex statistical properties and 
heterogeneity of the actual strength of edges and vertices. 
 
Moreover, a model for the growth of weighted networks has been proposed38, that 
couples the establishment of new edges and vertices and the weights' dynamical 
evolution. The model is based on a simple weight-driven dynamics and generates 
networks exhibiting the statistical properties observed in several real-world systems. In 



particular, the model yields a non-trivial time evolution of vertices' properties and scale-
free behavior with exponents varying in the interval [2,3] for the weight, strength and 
degree distributions. 
 
The simplicity of the model and the diversity of the results obtained suggest that it could 
be a very important ingredient in the formation of large networks. This model and its 
possible variations will be a very important tool in studies of complex networks, since it 
incorporates in a natural way the diversity of interactions, and allows for the study of 
their effect on diverse phenomena such as virus propagation or congestion failures.



 

Virtual Round Table on Ten Leading Questions  

in Network Research 
 
The following discussion is an edited summary of the public debate started during the 
conference  “Growing Networks and Graphs in Statistical Physics, Finance, Biology and 
Social Systems '' held  in Rome in September 2003. Drafts documents were circulated 
electronically among experts in the field and additions and follow-up to the original 
discussion have been included. Among the scientists participating to the discussion,   
L.A.N. Amaral, A. Barrat, A.L. Barabasi, G. Caldarelli, P. De Los Rios, A. Erzan, B. 
Kahng, R. Mantegna, J.F.F. Mendes, R. Pastor-Satorras, A. Vespignani are 
acknowledged for their contributions and editing.  
 
 
The last few years have witnessed a tremendous activity devoted to the characterization 
and understanding of networked systems. Indeed large complex networks arise in a vast 
number of natural and artificial systems. Ecosystems consist of species whose 
interdependency can be mapped into intricate food webs. Social systems are best 
represented by graphs describing various interactions among individuals. The Internet 
and the World-Wide-Web (WWW) are prototypical examples of self-organized networks 
emerging in the technological world. Large infrastructures such as power grids and the 
air transportation network are critical networked systems of our modern society. Finally, 
the living cell is not an exception either, its organization and function being the outcome 
of a complex web of interactions among genes, proteins and other molecules.  
 
For a long time all these systems have been considered as haphazard set of points and 
connections, mathematically framed in the random graph paradigm. This situation has 
radically changed in the last five years, during which the study of complex networks has 
received a boost from the ever-increasing availability of large data sets and the increasing 
computer power for storage and manipulation. In particular, mapping projects of the 
WWW and the physical Internet offered the first chance to study the topology of large 
complex networks. Gradually, other maps followed describing many networks of 
practical interest in social science, critical infrastructures and biology. Researchers thus 
have started to have a systematic look at these large data sets, searching for hidden 
regularities and patterns that can be considered as manifestations of underlying laws 
governing the dynamics and evolution of these complex systems.  Indeed, when studying 
the structure of complex networks, one finds out that in spite of the  apparent complexity 
and randomness of the underlying systems, clear patterns  and regularities emerge, which 
can be expressed in mathematical  and statistical fashion. 
 
Specifically, many of these systems show the small-world property, which implies that in 
the network the average topological distance between the various nodes increases very 
slowly with the number of nodes (logarithmically or even slower). A particularly 
important finding is the realization that many networks are characterized by the statistical 
abundance of “hubs”; i.e. nodes with a large number of connections to other elements. 
This feature has its mathematical roots in the observation that the number of elements 
with k links follows a power-law distribution, indicating the lack of any characteristic 
scale. This has allowed the identification of the class of scale-free networks, whose 
topological features turn out to be extremely relevant in assessing the physical properties 



of the system as a whole, such as its robustness to damages or vulnerability to malicious 
attack. 
 
The attempt to model and understand the origin of the observed topological properties of 
real networks has led to a radical change of perspective, shifting the focus from static 
graphs, aiming to reproduce the structure of the network in a certain moment, to 
modeling network evolution. This new approach is the outcome of the realization that 
most complex networks are the result of a growth process. As a result, we currently view 
networks as dynamical systems that evolve through the subsequent addition and deletion 
of vertices and edges. The set of dynamical rules defining these processes thus outlines 
the dynamical theory required for the description of the macroscopic properties of 
networks. This methodology that is akin to the statistical physics approach to complex 
phenomena appears as a revolutionary path in our understanding of networked systems 
and provides new techniques to  approach conceptual and practical problems in this field. 
 
While the advances that we have witnessed in the past few years were truly amazing, 
both in their impact on basic science and practical implications, they have highlighted the 
incompleteness of our knowledge as well. We are therefore in a position to ask a series of 
important questions that require the community’s attention. Our goal here is to formulate 
some of these questions, offering a loose guide to the community and ourselves. We 
should emphasize that we are aware of the fact that advances in all sciences are often 
induced by the ability of its practitioners to ask novel questions. Thus these questions 
should by no means be seen as a way to limit new ideas, or to channel our thinking into 
narrowly defined directions. We feel, however, that formulating these questions would 
offer a valuable guide to both practitioners and those interested in network theory, thus it 
is worthwhile elaborating on them. 
 
- Are there formal ways of classifying the structure of different growing models? 
Many networks models, or classes of models, have been recently formulated and 
empirically studied by numerical simulations or approximate analytical methods. While 
this corresponds to a great advancement in the modeling and representation of networks, 
a rigorous understanding of the topology of these models is far less developed. Questions 
concerning the universality of some topological properties, the correlations introduced by 
the dynamical process and the interplay between clustering, hierarchies and centrality in 
networks are still only partially answered. A full and general understanding of this issue 
amounts to the development of rigorous methods to uncover the mathematical structure 
of growing networks.  
 
-Are there further statistical distributions that can provide insights on the structure 
and classification of complex networks? 
In the study of complex networks a definite set of statistical distributions and observable 
quantities are customarily used in the real data analysis and in model characterization and 
validation. These distributions usually rely on the analysis of the network’s degree 
spectrum. The degree distribution P(k) of vertices, the clustering coefficient and the 
degree-degree correlations expressed as the joint probability P(k ,k’) of having an edge 
between two vertices of degree  k and k’ provide a general classification of the 
connectivity pattern properties. The ever-increasing evidence in networks for the 
presence of communities, motifs and modular ordering, however, calls for the developing 
of new ways to quantitatively characterize these features in precise mathematical terms. 
 
 -Why are most networks modular? 
The hierarchical nature of networks goes hand in hand with the existence of a modular 
architecture. In this perspective, networks can be fragmented in different groups of 



interconnected elements, or modules, each one being responsible for different functions, 
quantitatively identified by highly interlinked communities of elements. Modules can be 
repeated at different hierarchical levels and interconnected via the “hubs” of the system. 
How modularity emerges across many different networks and how it can be reconciled 
with the other properties of networks are basic questions of network theory. 
 
- Are there universal features of network dynamics? 
Networks are not only specified by their topology but also by the dynamics of 
information or traffic flow taking place along the links.  For instance, the heterogeneity 
in the intensity of connections may be very important in understanding social systems. 
Analogously, the amount of traffic characterizing the connections of communication 
systems or large transport infrastructure is fundamental for a full description of these 
networks. The final aim is a mathematical characterization that might uncover very 
general principles describing the networks’ dynamics .  
 
 - How do the dynamical processes taking place on a network shape the network 
topology? 
The network provides the substrate on top of which the dynamical behavior of the system 
must unfold At the same time, however, the various dynamical processes are expected to 
affect the network’s evolution. Dynamics, traffic and the underlying topology are 
therefore mutually correlated and it is very important to define appropriate quantities and 
measures capable of capturing how all these ingredients participate in the formation of 
complex networks. To carry out this task we need to develop large empirical datasets that 
simultaneously capture the topology of the network and the time-resolved dynamics 
taking place on it. 
 
 
- What are the evolutionary mechanisms that shape the topology of biological 
networks? 
While in technological and large infrastructure networks it is possible to uncover the 
fundamental dynamical rules governing the network evolution, in biological systems this 
task is much more difficult. In particular, the role of evolution and selection in shaping 
biological networks (with emphasis on cell biology) is still unclear, especially if we want 
a quantitative dynamical implementation of evolutionary principles in network modeling. 
 
 
- How to quantify the interaction between networks of different character 
(networks of networks)? 
Most networks are interconnected among them forming networks of networks. This is the 
case of the Internet, where diverse networks interconnect with each other and 
communicate through a common protocol. In more complicated situations, however, the 
interconnected networks are very different in nature and their interactions and reciprocal 
influence has been completely ignored. For instance, the energy and power distribution 
networks represent a physical layer over which many critical infrastructures, such as 
information systems, transportation networks and other public services are lying. In the 
biological world, the gene network is interconnected with the protein-protein interaction 
network and the metabolic network. The understanding and characterization of the 
complicate set of regulatory and feedback mechanisms connecting various networks is 
probably one of the most ambitious tasks in network research. In this case we are also in 
need of novel quantities and mathematical tools tailored to describe and model the 
structure of networks of networks. 
 
 



- Is it possible to develop tools to address in a systematic fashion the robustness and 
vulnerability of large technological and infrastructural networks? 
Complex networks react in different ways to different perturbations. In general they are 
robust to random damages but weak to attacks targeting some key elements of the 
system. Furthermore, networks have a dynamics as well as structure. For instance, in 
power grids, which transport energy, the failure of one component increases the burden 
on other elements, potentially overloading them, and disrupting their functions. In this 
way failures may cascade through the network, causing far more disruption that one 
would expect from the initial cause. A systematic theory of network resilience and 
robustness needs to address both local (individual failures) and global vulnerabilities 
(cascading failures).   
 
- How to characterize small networks? 
Many real world networks are far from being large scale objects, well described by 
statistical measures. In this case we have to stop relying on a statistical characterization 
and look for a detailed description of the particular structure. Concepts such as scaling 
behavior or average properties are not well defined and new unifying concepts and 
mathematical tools need to be devised. 
 
Why are social networks all assortative, while all biological and technological 
networks disassortative? 
A series of recent measurements indicate the social networks are fundamentally different 
from all other networks: while in social networks there is a tendency for the hubs to be 
linked together (assortativity), in biological and technological network the hubs show the 
opposite tendency, being primarily connected to less connected nodes. On one end it is 
not clear if this is a universal property (the measurements do indicate so, however). On 
the other end, the origin of this difference is not understood. Is there a generic 
explanation for the observed patterns, or it represents a feature that needs to be addressed 
in each network individually? 
 
 
The above list represents an attempt to limit ourselves to ten questions that we consider 
as potentially playing an important role in the field at this point. Their order does not 
reflect their relative importance, but a gradual shift from the more theoretical the 
predominantly practical and applied problems. The list cannot be exhaustive and 
naturally it should be seen just as a starting point, highlighting some of the challenges in 
front of us. They have been collected through discussions and debates with several 
colleagues, thus they may be considered as expressing a (albeit inherently imperfect) 
consensus of the network community.  
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