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Abstract. In the so-called bounded confidence model proposed by Deffuant et al, agents can influence
each other’s opinion provided that the opinions are already sufficiently close enough. We discuss here the
influence of possible social network topologies on the dynamics of this model.

PACS. 89.65.-s Social and economic systems – 89.75.Fb Structures and organization in complex systems

1 Introduction

Many models about opinion dynamics, [1–3], are based
on binary opinions which social actors update as a re-
sult of social influence, often according to some version
of a majority rule. Binary opinion dynamics have been
well studied, such as the herd behaviour described by
economists [1,3,4]. When binary interactions involve any
pair of randomly chosen agents, the attractors of the dy-
namics display a uniformity of opinions, either 0 or 1. Clus-
ters of opposite opinions appear when the dynamics occur
on a social network with exchanges restricted to connected
agents. These patterns resemble magnetic domains in Ising
ferromagnets.

The spreading of epidemics on scale free networks [5]
is also an instance of a binary state dynamics [6].

One issue of interest concerns the importance of the
binary assumption: what would happen if opinions were
a continuous variable such as the worthiness of a choice
(a utility in economics), or some belief about the adjust-
ment of a control parameter? These situations are often
encountered in economic and social sciences:

– In the case of technological changes economic agents
have to compare the utilities of a new technology with
respect to the old one, and for example surveys con-
cerning the adoption of environment friendly practices
following the 1992 new agricultural policies [7] showed
that agents have uncertainties about the evaluation
of the profits when they adopt the new technique and
thus partially rely on evaluations made by their “neigh-
bours”.

– Some social norms such as how to share the profit of
the crop among landlords and tenants [8] do display
the kind of clustering that we will further describe.
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In the bounded confidence model of continuous opinion
dynamics proposed by Deffuant et al. [9], agents can in-
fluence each other’s opinion provided that the opinions in
question are already sufficiently close enough. A tolerance
threshold d is defined, such that agents with difference
in opinion larger than the threshold can’t interact. Sev-
eral variants of the model have been proposed in [9–11].
In these models, the only restriction on the interaction is
the threshold condition and interactions among any pair
of agents may occur. The attractors of the dynamics are
clusters for which the number increases in steps when the
tolerance threshold is decreased.

The dynamics which we will describe here can also be
compared to the cultural diffusion model introduced by
Axelrod in which agents’ culture is represented by strings
of integers [12].

The purpose of this paper is to check the role of specific
interaction structures on the result of the dynamics. We
will investigate a bounded confidence interaction process
on scale free networks and compare the obtained dynamics
to what was already observed when all interactions are
possible and when they occur on square lattices among
nearest neighbours.

The paper is organised as follows:

– We first expose the simple case of complete mixing
among agents.

– We then check the genericity of the results obtained
with the simple model (complete mixing) to other
topologies, mostly scale free networks.

We are mainly interested in:

– the clustering process,
– the possible existence of regime transitions according

to the value of the threshold of influence d,
– the relative importance of the clustering process with

respect to the whole population. Do all or at least most
agents participate into this process?
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Fig. 1. Time chart of opinions (d = 0.5 µ = 0.5 N = 2000).
One time unit corresponds to sampling one pair of agents.

2 The basic case: complete mixing

Let us consider a population of N agents i with continuous
opinion xi. We start from an initial distribution of opin-
ions, most often taken uniform on [0,1] in the computer
simulations. At each time step any two randomly chosen
agents meet: they re-adjust their opinion when their differ-
ence in opinion is smaller in magnitude than a threshold d.
Suppose that the two agents have opinion x and x′.

Iff |x − x′| < d opinions are adjusted according to:

x = x + µ(x′ − x) (1)
x′ = x′ + µ(x − x′) (2)

where µ is a convergence rate whose value may range from
0 to 0.5.

In the basic model [9], the threshold d is taken as con-
stant in time and across the whole population. Note that
we apply here a complete mixing hypothesis plus a ran-
dom serial iteration mode1.

For finite thresholds, computer simulations show that
the distribution of opinions evolves at large times towards
clusters of homogeneous opinions. Such a clustering is a
convergence process: all opinions inside a cluster converge
to a consensus at infinite time. The dynamics always end
up gathering opinions in clusters on the one hand, but
also separating the clusters in such a way that agents in
different clusters don’t exchange anymore.

In the two time charts (Figs. 1 and 2), points corre-
spond to the opinions of those pairs of agents updated
at time t, the abscissa of the chart. The distribution of
agents is initially rather large and evolves towards clus-
ters of similar opinions at large times.

1 The “consensus” literature [10] most often uses a parallel
iteration mode and supposes that at each time step agents av-
erage the opinions of their neighbourhood. The implicit ratio-
nale for parallel iteration is that this process models successive
meetings among experts.

Fig. 2. Time chart of opinions for a lower threshold d = 0.2
(µ = 0.5 N = 1000).

– For large threshold values (d > 0.25) only one cluster
is observed at the average initial opinion. Figure 1 rep-
resents the time evolution of opinions starting from a
uniform distribution of opinions.

– For lower threshold values, several clusters can be ob-
served (see Fig. 2). Consensus is then NOT achieved
when thresholds are low enough.

Because opinions have real values, the convergence to-
wards a consensus inside a cluster never actually ends,
but the separation between clusters is ensured as soon as
no opinion closer than d remains in the neighborhood of
a given cluster.

The number of clusters varies as the integer part of
1/2d: this is to be further referred to as the “1/2d rule”
(see Fig. 3 2).

3 The scale free network topology
and opinion updating process

We use a standard construction method, see for example
Stauffer3 and Meyer-Ortmanns [13]:

Starting from a fully connected network of 3 nodes,
we add iteratively nodes (in general up to 900 nodes) and
connect them to previously created nodes in proportion to
their degree. We have chosen to draw two symmetric con-
nections per new added node in order to achieve the same

2 Notice the continuous transitions in the average number
of clusters when d varies. Because of the randomness of the
initial distribution and of pair sampling, any prediction on the
outcome of dynamics such as the 1/2d rule only becomes true
with a probability close to one in the limit of large N .

3 The model presented here has many similar features to the
one studied by Stauffer and Meyer-Ortmanns. But we don’t
monitor the same quantities which results in rather different
perspectives (see later).
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Fig. 3. Statistics of M the number of samples with a given
number of clusters as a function of threshold d with 250 samples
per d value (µ = 0.5, N = 1000).

average connection degree (4) as in the 30×30 square lat-
tice taken as the reference. But obviously the obtained net-
works are scale free as shown by Barabasi and Albert [5].

In fact scale free networks [5] display a lot of het-
erogeneity in node connectivity. In the context of opin-
ion dynamics, well connected nodes might be supposed
to be more influential, but not necessarily more easily in-
fluenced. At least this is the hypothesis that we choose
here. We have then assumed asymmetric updating: a ran-
dom node is first chosen, and then one of its neighbours.
But only the first node in the pair might update his po-
sition according to equation (1), not both. As a result,
well connected nodes are influenced as often as others, but
they influence others in proportion to their connectivity.
This particular choice of updating is intermediate between
what Stauffer and Meyer-Ortmanns [13] call directed and
undirected versions.

4 Clustering and transitions

A simple way to check clustering, and especially its aver-
age for many samples, is the dispersion index y proposed
by Derrida and Flyvberg [14]. y is the ratio of the sum
of the squared cluster sizes s2

i to the squared number of
agents

y =
∑n

i=1 s2
i

(
∑n

i=1 si)2
. (3)

For m clusters of equal size, one would have y = 1/m.
The smaller y, the more important is the dispersion in
opinions. y can be considered as some average of the in-
verse number of clusters. In the limit of large N , for uni-
form initial distributions and slow convergence rates, y is
a good indicator of the cluster number.

In the case of full mixing discussed in the previous
section, a plot of y as a function of d displays a stair-
case, in which steps correspond to the discontinuities of
the integer(1/2d) function, with y values varying from 0
to 1 (Fig. 4).

Fig. 4. Average dispersion index y as a function of the toler-
ance threshold d for well mixed systems (‘+’) and for scale free
networks (‘×’) with 900 nodes. Each data point is the result of
an average over 100 simulations, i.e. 10 initial conditions taken
on 10 networks.

When averaging over network topology and initial con-
ditions the step structure (Fig. 4) observed in the case
of full mixing seems to be completely blurred for scale
free networks: one observes a continuous increase of the
Derrida Flyvberg parameter as a function of the tolerance
threshold with only a kink in the d = 0.25, y = 0.7 region;
while three distinct steps at y = 1, y = 0.5 and y = 0.33
are observed in the well mixed case, corresponding to the
occurrence of 1, 2 and 3 large clusters respectively.

In fact the blurring of the transition in scale free net-
worksis due to two effects:

– the S curve is the result of averaging over many net-
work topologies and initial conditions.

– The existence of many outlying4 nodes [15] in scale free
networks, which remain out of the clustering process
thus decreasing y.

Zooming in one transition region, 0.2 < d < 0.3, and
avoiding averaging give us a better insight (see Fig. 5).
When measurements are done on single instances of net-
work topology and initial conditions, one observes in the
transition region distinct y values corresponding to either
one (larger y values) or two clusters (smaller y values).
The proportion of these two y values varies with d, larger
y values being more often obtained with larger d values.
The continuous variation of the average dispersion index y
observed in Figure 4 in this region thus reflects this change
in proportion.

4 During the iterative process of opinion exchange, nodes
with few connections have less chances to interact with a neigh-
bour whose opinion is close enough to their own opinion to ac-
tually interact. Many of them are not affected by the conver-
gence process and remain outside the distribution of clustered
opinions. We call them outlying nodes. Their number decreases
with µ the convergence speed parameter. Using physical terms,
outlying nodes are “defects” resulting from fast quenching.
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Fig. 5. Variation of the dispersion index y as a function of the
tolerance threshold d. Big ‘+’ correspond to the well-mixed
case, small ‘×’ to square lattice and big ‘*’ to scale free net-
work with connectivity 4. In contrast with the previous figure,
each point is the result of only one sample. The square lat-
tice contains 30 × 30 nodes and the two other sets contain
900 agents.

For the sake of comparison Figure 5 displays the vari-
ations of the dispersion index y with the tolerance thresh-
old d for three different topologies: the standard well-
mixed case where any agent might interact with any other
one, the square lattice and the scale free network with an
average connectivity k equal to 4 (k = 4 is also the con-
nectivity of the square lattice).

One observes that in the well mixed case the y values
are either 0.5 or 1, with a rather narrow ambiguous region
in d. But for scale free networks, y values are smaller,
an indication of the existence of many outlying agents
whose opinion does not cluster because they are too iso-
lated (also see Figs. 6 and 7). Their distribution is bimodal
in a larger ambiguous region. The magnitude and disper-
sion of y values is similar for the scale free network with
connectivity 4 and square lattices. Increasing the average
connectivity by a factor 2 (not reported on the figure)
brings the scale free network results closer to those of the
well-mixed case. Connectivity seems as important as the
regularity of connections in determining y.

One of the most important questions in scale free net-
worksis the role of the most connected nodes with respect
to the less connected ones. In the context of opinion dy-
namics, we might want to figure out whether they are more
influential, or eventually more influenced? One answer is
provided by checking how far their opinion is changed by
the clustering process. Figure 6 is a plot of the opinions
of agents after convergence of the clustering process as a
function of their initial opinion. Node connectivity is in-
dicated by the size of the vertical bars. The importance
of clustering is indicated by the density of points on hori-
zontal lines while outlying agents are located on the first
bisector.

Fig. 6. Final opinions x∞ versus initial opinions x0 on a scale
free network with average connectivity 4 and tolerance 0.2.
Vertical bars give the number of neighbours of each node (the
largest correspond to 85).

Fig. 7. Final opinions x∞ versus initial opinions x0 on a 30×
30 square lattice with tolerance 0.2.

Most of the well connected nodes belong to the hori-
zontal cluster at x∞ = 0.5. Most are away from the first
bisector, which imply that they have been influenced dur-
ing the clustering process.

The first bisector is composed of less connected nodes,
whose initial and final opinions are more than d = 0.2
away from the cluster. These nodes have not changed their
opinion. In scale free networks, static isolation (due to
lower connectivity) often results in being kept out of the
clustering process and remaining outlying. The effect is
systematically observed for all tolerance thresholds less
than 0.5. The outlying nodes’ number explains why the
highest values of y are lower than 1 in Figure 5: only one
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central cluster is present, but it only contains a fraction
of the nodes.

For the same d values, well mixed systems display hori-
zontal clusters in this [x0, x∞] representation but few out-
lying agents (not represented here).

Stauffer et al. [13] have done extended statistics on
the total number of different opinions after convergence in
scale free networks. Since the number of outlying agents is
much bigger than the number of big clusters, their figures
give a very good characterisation of the number of outlying
nodes.

For the sake of comparison we give the equivalent dis-
play for square lattices (Fig. 7). The results are pretty sim-
ilar to those obtained with scale free networks. The less
populated horizontal lines around x∞ = 0.2 and x∞ = 0.8
correspond to small homogeneous “islands” on the lattice
while the big x∞ = 0.5 region percolates as checked on
computer displays [9] (not represented here).

5 Conclusions

In conclusion, restricting influence by a network topology
does not drastically change the behaviour of these models
of social influence as compared to the well mixed case. To
summarise some of the resemblances and differences:

– One does observe clustering effects, and the number of
observed main clusters does not differ much from what
is observed for equivalent tolerance thresholds in the
well mixed case5.

– Stairs of y, the dispersion index, do appear: at least
when measured without averaging on single instances
of networks and initial conditions. But y values are
decreased by a larger proportion of outlying agents and
the transition regions in tolerance are larger.

– Well connected nodes are influenced by other nodes
and are themselves influential. Most of them belong to
the big cluster(s) after the convergence process.

– Larger connectivities bring the scale free networks dy-
namic behaviour closer to well mixed systems.

We thank D. Stauffer for helpful discussions and early commu-
nication of his results [13], and F. Amblard for useful remarks.

5 We have only been discussing clusters in terms of opinions,
not in terms of connections across the network. For small d
values, clustering in opinion might structure the network in
smaller connected regions with clustered opinions. One can ex-
pect the number of such non-interacting regions to be larger
than the number of clusters (as observed on square lattices [9]).

We acknowledge partial support from the FET-IST grant of
the EC IST 2001-33555 COSIN.
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