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Role of clustering and gridlike ordering in epidemic spreading
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The spreading of an epidemic is determined by the connectivity patterns which underlie the population.
While it has been noted that a virus spreads more easily on a network in which global distances are small, it
remains a great challenge to find approaches that unravel the precise role of local interconnectedness. Such
topological properties enter very naturally in the framework of our two-time-step description, also providing an
approach to track a probabilistic system. The method is elaborated for SIS-type epidemic processes, leading to
a quantitative interpretation of the role of loops up to length 4 in the onset of an epidemic.
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I. INTRODUCTION tribution P(k) which gives the probability that a randomly

chosen node has degrkethat is,k edges. For most of the
Almost all of us have already met someone far fromj i mentioned examples, this distribution was found to be
home, who turns out to share a friend with us. Milgram f|rStP(k)~k—y, 2< y=3, implying the absence of a characteris-

put t.his. s_ocial phenomenon on a firm basis, finging that. anyic (degre¢ scale, hence the nanseale-freenetwork. This
two individuals are separated, on average, by six acquainta mergence of scaling can be understood, for example, in
ces .[1]' Eurthgrmorg, our: society Is. compqsed of 9roUPSerms ofgrowing networks. Starting from a small core graph,
within which, 'f. mgjmdual A is acquainted with persons B at each time step a node is added together with a certain
an? C,kthe?h_B is likely :ﬁ Iint?]w _C.dl_n_;he llar}gugge O:; S(_EI’C"'J‘Inumber of edges that are connected to existing nodes, the
networks, this means that the ndividuals A, b, and & arg,yq, being chosepreferentially that is, a link is more likely
arra_nged_on a triangle. '_I’hese two facts tell us that in the'established to a high-degree nd@. This fat-tailed degree
social universe, global distances are small, and local intefgisyipytion implies the presence bibs(high-degree nodgs
connectedness, i.eclustering IS high. A ”?twc.’fk that pos- which hold together the network and play a crucial role in
sesses both of these topological properties is callsthall issues such as robustness or fragifitg]
}/;/]orld. In ordte_r fo find a %Odﬁl that aCCOUTtS rotrt' bath hOf This explosion of research activity in the field of complex
edse propgr:jes,do:we leu hi ChIOO.S(te a regu T da écet WNOSEetworks has also shed light on epidemic spreading since the
nlo besl gret indee ocl:a y g tﬁ{ Irt] ercor}nect\i/ 'k l?t SINCRatter can be regarded as a dynamical process occurring on a
global distances are large in tnis type ob network, it 1S ancomplex network: a computer virus spreads on the Internet,
ineligible car}dldgte for a small world model. In a r_andom and HIV (as a biological exampjepropagates on top of the
g_raph[Z]_, which is a set of nodege.g., laid out on a virtwal \yeh of human sexual contacts. Also these two examples fall
circle) with connections between them established at ran; o the category of scale-free netwoildd, 12, and it is this
dom, ? Imkt:s ﬂore likely t]? pomt;o :afar away no?}e th_an t(I) topological property that accounts for the absence of a finite
one 905(.3 y(Here we refer to the distance on the virtua epidemic threshold in the corresponding spreading phenom-
circle’s circumferencg.As a consequence, the presence Ofenon[ls]
the very many long-range links accounts fqr the desired glo- The degree distribution is only a first way to characterize
bal property, b.Ut the degree O.f c_Iustermg is low. Watts an e degree related topology of a complex network. Indeed,
Strog_atz combined these two insights anq proposed a mod analyzing scientific collaboration networks, researchers
that interpolates between a regular lattice and a rando orking with many otherghigh-degree nodggend to col-
graph, _thus capturing both the global and local topologica aborate with other “hubs.” This means that there egiist
_propetzrtles Tent'ﬂ.nbe.’fl gbbo{/é]. Bult th?v;/smlin v;/(oildtﬁroperr]t{h gree correlationsand the just mentioned property has been
IS not merely exnibited by soclal Networks. Yel, thfough theqo 04 5ssortative mixingholding generally for social net-

increased availability of data, it was found that the SimU|ta'works[14]. On the other hand, in the Intern@ the autono-

Neous occurrence of high Ioca_lhd global interconnected- mous system levgl high-degree nodes are more likely con-
ness is prominent to a much wider class of systems, notably, 4 o low-degree ones, thus exhibitidigassortative

the Internet[4,5], the World Wide Web[6], metabolic net- mixing. The influence of such degree correlations on the

works [7], and food webs8. spreading of an epidemic was investigated in defa8],

. In addition to the .small world property, t_here IS armtherfinding that neither assortative nor disassortative scale-free
important fact when it comes to characterizing the tomlogynetworks exhibit a finite epidemic threshold6]. The in-

gf a cfomdplex n_(rart1work: not all ;he nodes havg the samdg nums'ights about the role of these degree related topological prop-
er of edges. The corresponding measure isdtegree dis- erties in epidemic spreading have been gained at the mean-

field level.
Besides degree correlations, triangles are ubiquitous in
*Electronic address: Thomas.Petermann@alumni.ethz.ch complex networks as outlined in the first paragraph, and
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more generally, many loops of short length were found inthe double-step approach for networks of degree 4, the gen-
these systemEl7]. Motivated by Watts and Strogatz’ model eralization to arbitrary degree is done in the following sec-
[3] which uses a regular lattice, i.e., an ordered network postion. The major conclusions are drawn in Sec. VI.

sessing many loops, as starting point, we shall also use the

concept oflocal orderingwhen referring to the loop structure

of a complex network. More information can be extracted if IIl. THE MODEL INGREDIENTS

the tria_ngl_es are sorte_d according to the degrees of their cor- he dynamical laws that describe the spreading of an in-
ners, finding that mainly the low-degree nodes account fofecfiys disease are determined by the contact structure
the high level of clustering18,19. This suggests the pres- \ nich ynderlies the population. We therefore model the epi-

ence of interesting modular organizations, and similar resultaemiC as a dynamical process on top of a given network that

were obtained from an analysis of loops of length14]. I
Local ordering plays a crucial role in the function of a meta-d0€S 1ot change in time. The nodes of the network represent
individuals, and the links correspond to relationships be-

bolic network (with scale-free topology Indeed, the loop individuals al hich an infecti
structure is much richer than in the scale-free model based di{/€€n Individuals along which an infective agent can propa-

growth and preferential attachmef®0]. This work also in- ; i . . . L
vestigates the number of triangles as a function of the system_ Since the aim of this paper is the investigation of the role
size for this model, a result which was generalized to loop$f l00ps of short length, we adopt a rather simple epidemio-
up to length 5, yielding robust scaling relatiof#dl]. logical model where the individuals can be only in two pos-
Obviously the presence of loops has an effect on thé&ible states, namely, infectét) or susceptiblg€S). Because
spreading behavior since, with respect to a treelike topologythe nodes repeatedly run through the cycle susceptible
there exist many more paths along which the virus carinfected— susceptible, it is called SIS model. In the physics
propagate. Different strategies in order to gain insights abougommunity, it has recently been formulated as folldds]:
the role of local ordering properties have been proposed. AA node susceptible to the disease gets infected with probabil-
interpretation of how clustering influences the stationaryity vAt if it is connected to at least one infected nearest
spreading behavior was obtained by mapping the epidemigeighbor. On the other hand, infected nodes recover sponta-
process onto bond percolati¢gf2]. Another approach is to neously with probabilitydAt. This version of the SIS model
abandon the mean-field level and take into account spatia$ formally advantageous with respect to its conventional for-
correlations which govern the epidemic dynamics. Matsuddnulation, where infected nodes can infect neighboring sus-
et al. first used the ordinary pair approximation in order to ceptible vertices with probabilityAt [27]. In the latter case,
study a population dynamical proble®3]. This approxima- susceptible nodes become infected with probability(1l -
tion, as its name anticipates, accounts for pair correlations vAt), ki being the number of infected nearest neighbors.
and lies at the basis of improved pair modg24,25 which  In this paper, we will use the former version. By rescaling
uncover the role of local ordering in a rather indirect way:the time unit, we can reduce the number of parameters to
clustering enters by making a number of assumptions abouwtne: the time evolution is determined by the effective spread-
the open(~£) and closed(A) triple correlations. In cluster ing ratex=v/ 4, and the recovery rate is set to 1. The quan-
approximations, a time-dependent probability is assigned titative details of the behavior of the system still depend on
each configuration of the fundamental cluster whose choicthe choice ofAt. In particular, the effect of the loops is of
is guided by the network topolodi26]: for investigating the higher order inAt, such that their influence is not seen in the
spreading dynamics on a triangular lattice one uses a triangleontinuous-time limi{At— 0). As long asAt> 0, we set this
as fundamental cluster whereas the star is the appropriatguantity to 1 without lack of generality.
choice for a random network. Higher-order correlations are The other model constituent concerns the underlying net-
therefore embedded very explicitly. Moreover the systematievork. We shall not attempt to examine the combined effect
improvability of this method makes it a powerful tool to of the degree distribution, degree correlations, and the loop
study probabilistic systems. structure. While the role of these degree related connectivity
In order to understand the role of local ordering proper-patterns in epidemic spreading is rather well understood,
ties, the exploration of temporal correlations seems to be alittle attention has been given to the effect of local ordering.
even more natural approach: for example, within a two-ste@hat is why we focus on this topological property. We there-
description, it matters whether the local topology is treelikefore use networks in which every node has the same number
or if loops of short length are present. The method is illus-of nearest neighbordixed degreg The adopted strategy is
trated for the susceptible-infected-susceptible m¢sket, for  to start with strictly homogeneous grapimetworks in which
example, Ref.[27]), homogeneous networks are used addentical connectivity patterns are “seen” from every node
starting point, and analytical estimates are obtained also fadiffering in the detailed loop structuk&ig. 1). This leads us
disordered graphs obeyir(k) =& «, K being arbitrary. to an understanding of the role of these distinct local order-
The paper is organized as follows. Section Il describes théng properties, even for networks that are no longer strictly
adopted model consisting of the contact network as well aBomogeneous but which still obe(k) =5, K being the
the local dynamics. In Sec. Ill, we introduce the formalism,constant degree.
from which the two-step description is derived. For com- In the caseK=4, examples of purely homogeneous net-
pleteness, the necessary ingredients in order to arrive at thveorks are the random homogeneous netwil. 1(a)] con-
one-step site approximation, i.e., the common mean-fielgtructed according to the Molloy-Reed algoritlig8,29, the
level, are also shown. Section IV explores the implications ofsquare lattic§Fig. 1(b)], the Kagomé latticfusually used in
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(b) (© (d

FIG. 1. Homogeneous networks of degree 4(dnthe nodes are connected at random under the restrictioK thatlinks emanate from
every vertex, leading to a treelike topology. The role of triangles and loops of length 4 is studied by means of the squal® &ttiche
Kagomeé lattice(c) where they appear separately, as well as the ring-type neti@nrk

condensed matter physics as this geometry represents one of lIl. THE FORMALISM
the most frustrated antiferromagnetic systems, Fig)] and ) i ) ) .
a ring where nodes two units apart from each other are also In this section, we shall introduce the formalism that is

directly connectedFig. 1(d)]. For the random network, the US€d in order to describe the dynamics on top of the net-
homogeneity definition given above only holds approXi_works specified in the preceding section. For completeness,

mately. While loops of short length do not occur in the limit W then derive thesingle step mean-field approximation

of large network size, long ones of various lengths may existVhich could also be obtained heuristically. In the last para-
Therefore different nodes may not “see” identical connectiv-9aPh, we derive a two-step description that allows us to gain
ity patterns. Also the Cayley tree lacks completely in loops.NSight about the loop structure in epidemic spreading.

But as the last generation of nodes has degree 1, it does not ON @n exact level, we shall describe the epidemic dynam-
fall into the class of homogeneous networks. Indeed, sincS PY assigning a probabilitf;(x) to each configuratior at

the number of nodes belonging to generatisnis K(K every instant of time. The vectorx contains the stateg of
~1)N-1 most of the nodes are even comprised within the lasg!! the nodes of the networkx; being either Qsusceptible
generation. Clearly, all the networks depicted in Fig. 1 are’" 1 (infected. The system probabilities satisfy at any tite

characterized by the degree distributiBtk) = 64, but they

differ in the way the second neighbors are arranged, that is, E Px)=1

the loop structure becomes richer going fraa) to (d). ™ t '

While the random network has no short loops at all, the ones

of length 4 are a fingerprint of the square lattice. In thegng evolve in time according to

Kagomé lattice, every node is a corner of two distinct tri-

angles. Finally, in the ring of degree 4, triangles and two

different kinds of loops of length 4 are found, namely, Pt+l(x):2Wy—>xpt(y)- (1)
plaguettegas in the square lattigand the so-called primary y

quadrilateralgtwo adjacent trianglgssee Sec. IV B.

In order to study the epidemic process on disordered “hoThe transition matrix of the system),_,, is obtained from
mogeneous” topologies, we subject the networks in Figsthe matrix - which shall denote the probability that the
1(b)-1(d) to the following rearrangement algorith(fig. 2)  state of the arbitrary sitechanges frony, to x,, through
[30].

(1) Choose randomly two linkglink 1 connecting node N
A; with B; and connection 2 linking vertek, with B,) that Wy x= 11 Wy e
do not share a common node. =
(2) Remove these two links and establish two new con-
nections betweeA,; andB, as well asA, andB;. N being the total number of nodes in the network. The matrix
Flements representing the probabilities for the possible

Repeating this rewiring procedure a certain number Olevents at the siteare given by our version of the SIS model,

times leads to locally varying numbers of loops while the

degree distribution remains unaltered. namely,
Wllﬂo =1, Wloﬂl = )\[1 -ITa ‘Yj)] ,
1 jnnl
Ale——e B, A, 1’ B,
2
A, e—=—@B, A 02 B, W,_,=0, VVIOHO=1—)\[1—H(1—y]-)},
jnnl

FIG. 2. Rewiring procedure not affecting the degree distribu-
tion: the end vertices of two arbitrarily chosen links are exchangedor in a more compact form
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Wy = 1=+ N(2x - 1)(1 —y,)[l -1Ta —yj)]

jnnl
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ing rateX is the number of nearest neighbdts
Improvements upon the mean-field description can be ob-
tained by taking into account spatial correlations. Based on

The products in the above expressions have to be taken ovg{e ordinary pair approximatiof23], the presence of tri-

all the nearest neighboisof nodel. The factor 141;,,(1
—y;) is 1 if at least ongy;=1 and 0 otherwise.

angles enters by establishing a number of hypotheses about
the open and closed triple correlatidi24,,25. This approach

Before deriving our two-time-step description, we showtherefore embeds this topological property in a rather im-

how the conventional mean-field approximation is retrieve

licit way. In cluster approximation6], the local topology

through this formalism. At that level, the sites are considereGnd its associated spatial correlations translate directly into
independently from each other, and we write for the systemhe choice of the cluster and a set of probabilities for its

probability

N
Px) = Il_[ Pi(x), 2
=1

i.e., the system is described by the single varidil&) [the
probability of being susceptible iB;(0)=1-P,(1)]. Its dy-
namics is obtained from E@l) by summing it over all pos-
sible configuration, X, held fixed

E P(x) = E PAy) E

{x}tizo0 y x}jz0

Wi_s,

0
Yo—Xo

where the node 0 can be chosen in an arbitrary way. The
left-hand side of the above equation corresponds to the prob-

ability that node O is in statg, at timet+1. With the ansatz
(2), the time evolution is

Pi1(1) =AP{(0)[1 - Pt(O)K]-

With P,(1) =P, andP,(0)=1-P;, by consequence, we obtain

for small values ofP,,

Pt+l = )\K(l - P[) Pt' (3)

The stationary-state conditigi?,.,=P;) leads to a value for
the epidemic threshold

A= (4)

possible configurations.

Another strategy that serves to incorporate local ordering
properties is to take into account temporal correlations. Thus
by performing two time steps exactly, we expect that the way
the second neighbors are arranged, enters very naturally into
the description. For example, the cases where two nearest
neighbors of an arbitrary node are also directly connected
(presence of a trianglewhere they are linked via a second
neighbor(giving rise to a loop of length Yor where the only
path goes through the original no¢teeelike structurg lead
to different results. In the remaining part of this section, we
derive the general equation, special cases are then looked at
within the following section.

As outlined above, we iterate E@L) once

D [WHE WzﬂyPH(z)} .
y z

We now again pass to a site approximation. By summing the
above equation over all possible configurationsx, held
fixed, we get

K
Pi(X0) = 2 |:73t—1(z) > (Wyo—*on sz—>yj) :| ,
z Wh=01, ...k j=0
5

0 again being an arbitrarily chosen node. Furthermore, the
system probabilityP,_;(z) is given by Eq(2), and the nodes
1,2,... K denote the nearest neighbors of the arbitrarily
chosen node 0. As onlystates associated with the vertex 0,
its nearest and second neighbors appear iHactors, the

Therefore all the networks depicted in Fig. 1 are treated idensum over thez variables associated with nodes more than
tically at this level of description. The only topological prop- two links away from vertex 0, is carried out trivially. A tour
erty that determines the critical value of the effective spreadde force calculation leads to

K

K K K
Pra(1) :7\[7\ > <fa1>t—l_)\2< > 2 (faforat 2 <f0fa1>t—l)
1

ap=1 a1=1 ap=ag+l

K K

K K

+ 7\3( 2 2 2 <falfa2fa3>t—1 + E
a1=1 ap=ag+1l ag=ay+1

K K K

—(—x)K( 2 X X

a1=1 ap=ay+1 ag=ag_1+1

K K
(falfa2~~'faK>t—l+ E E e E

tllz

E <f0fa1fa2>t—1)' .

a1=1 apy=ag+l

K

<f0falfa2 tt faK_1>I—1> ] . (6)

a1=1 ap=ag+l ag-_1=ag-p*+1
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FIG. 3. Equilibrium prevalences for the epidemic process on top of different networks characteri®) by, ,. Left: Simulation
results for the homogeneous random gréph the Kagomé latticé ), the square lattic€ 1), and the ring-type networkO). Right: The
one-step site approximatigithin solid) ignores(local) ordering properties and yields.=0.25 for any homogeneous network of degree 4.
For the Molloy-Reed networkdotted, the Kagomé latticgsolid), the square latticédashegl and the ring(dotted dashex different
steady-state prevalences are obtained at the two-step level.

Thereby the connectivity embedding factor fore anticipate that either four plaquettes or two triangles
(per node lead to the same effect in the regime of low preva-
f,=01 —za)[l -1 @ —z(,)] lences. Finally, the lowest epidemic threshold is found if the
onna population is arranged on a homogeneous random network
{1 if z=0 and at leastonez. =1 (of degree 4 The last result is very intuitive since in such a
= “ 7 graph, global distances are small, making it more easy for a
0 otherwise virus to spread. Therefore, even if the effective spreading

and the expectation value of a function of the states of nodEAte is rather low, a finite fraction of the population will be
0, its nearest and second neighbors, these vertices colle ifected in the stationary state, hence the small value for the

. : 2 ocation of the onset of the epidemic. In summary, these
tively being denoted by, results indicate that the poorer the loop structure, the lower
_ the corresponding epidemic threshold.
(OZdien2n = {zk}z Z[ H2 Pt(z')g({zm}mENz)] ™ In the ri%ht pa?t o? Fig. 3, the one-step and two-step site
keN leN . .
approximations are reported. The former corresponds to the

were introduced for notational convenience. In the following,steady-state solution of E@3) for which p=0 at\.=1/4
an expectation value of a product off factors will be re- according to Eq(4). All the networks in question are there-
ferred to as a term afth order although it is proportional to fore treated identically, the loop structure being ignored at
A\". As is illustrated in detail in the following section, every this level of description. Yet, the two-step solutidiEsy. (5)]
term of Eq.(6) corresponds to a subgraph of the graph com-are diverse for the different graphs. Going from right to left,
posed of the nodes’? and whose links are according to the the curves correspond to the ring, the square lattice, the
network under investigation. It can already be anticipated<agomé lattice, and the Molloy-Reed network, that is, they
that the first term accounts for the degree distribution onlyappear in the same sequence as at the level of simulation.
whereas the contributions of higher order will give insight Furthermore, the curves corresponding to the Kagomé and

into the role of the loop structure. square lattice also meet theaxis at the same value of.
These findings confirm our intuitive arguments given in the
IV. NETWORKS OF DEGREE 4 preceding section. It has to be noted that the two-step esti-

mates for the threshold values are still considerably inaccu-
In this section, we elaborate the implications of our two-rate especially for the ring and lattices, but this just high-
step description, the analysis being restricted to the statiorlights the presence of higher-order spatiotemporal
ary state. correlations. However, the important point is that the degen-
In the left part of Fig. 3, we show the simulation results eracy associated with the one-step description disappears at
for the graphs introduced in Sec. Il. The ring-type networkthe two-step level.
exhibits the largest epidemic threshold. For both the square On the basis of Eq(6), we shall now analytically study
and Kagomeé lattices, the critical valueNg=0.34. We there- the effect of local ordering properties upon the epidemic
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(@) (b) (c) (d)

FIG. 4. Pictorial representation of the terms of E&). for a treelike topology. The order of a specific subgraph is given by the number
of filled circles, (a) corresponding tdf,), (b) to (f;f,) and(fyf;), and so forth. In this vein, the indices of tligactors appearing in the
expectation values correspond to filled circles whereas empty circles represent their nearest neighbors. The dashed lines are the links of the
complete graph which are not contained in a specific subgraph.

spreading, leading to a quantitative understanding of the fiip=22> 3 3 {P(z)P(z)P(z,)

threshold value. 0 1 2 21232123

X P(211) P(212) P(213) P(221) P(250) P(29) 15}
A. Random network =P+0(P?,

We shall now evaluate all the terms of K@) for alocally  occurring(3)=6 times and
treelike topology. Figure 4 shows the subgraphs representing
the terms in Eq(6), in increasing order. Thereby the corre- fEY = P(22)P(2:)P(2,)P(2) P
spondence is as follows: Given the tetmfz), the nodesy {fofa) %;122%4 111_2213{ (20)P(2)P(2,)P(2) P(z)
and B are represented by filled circles whereas their nearest Cap2 3
neighbors are drawn by empty circles. The links which enter X P(21)P(z12) P(z13)fof 1} = 9P+ O(P7),
at the level of the subgraph in question, are represented
solid lines whereas the ignored ones are dashed. If we deno
the second neighbors of the central vertex 0by2,I13 for
I=1,2,3,4 andollow Eq. (7), the first-order contribution for
a,=1 [subgraph in Fig. @)] is

hus not giving a contribution to first order id. As a con-
%quence, the second-order tethmt is the one proportional
to A\?) is 6P.

As the procedure should now be clear, we only give the
results for the remaining orders. The upper subgraph of Fig.

(Fy=> > > {P(z)P(zo)P(z,)P(z10)P(z13) 4(c) represents the ternif,f,fs). Its contribution is P
I 20 fiecoEns +0(P?). The lower subgraph corresponds(fgf;f,), yield-
X (1—z)[1=(1=z2¢)(1—2,)(1—215)(1—z2,3) ]} ing 18°3+0(P*). As the former term has multiplicity;)

=4, the total third-order contribution isP4
As far as the fourth order is concerngiig. 4(d)], the
h subgraph involving node O as filled circle neither gives a

=4P+0(P?)

where the sum over the variables to which no circles are
associated, has been carried out trivially. Furthermore, we
again have seP=P(1) in the third line(this is also done

below), and the time index was omitted since we are only
interested in the steady state. This term appears with multi-

plicity 4 (due tozzlﬂ ), giving the contribution 1B to first FIG. 5. Loops of length 4 in a network. Primary quadrilaterals

(left) are two adjacent triangles and therefore involve only nearest

Orde.r inP. neighborg(solid empty circlesof the central nodéfilled circle). A
Figure 4b) shows the subgraphs representifigf,) (Up-  secondary quadrilateratight) involves a second neighbedotted
per pary and(fyf;) (lower pary. Their contributions are empty circlg as well.
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TABLE I. Loop properties for the simple non-tree-like networks
described in Sec. II.

Network E Q Q, €, G /g ______
Square lattice 0 0 4
Kagomé lattice 2 0 0
Ring 3 2 2
______________________________ O Q [

contribution whereas the terfi;f,f5f,) having multiplicity
1 also givesP+O(P?), thus totally yielding\\*P.
Collecting these findings, we obtain the following condi-
tion that determines the epidemiC threshold for a treelike FIG. 7. Subgraphs of second order for the Kagomé lattice, both
topology contribute withP+O(P?). See Fig. 4 for details regarding line and

1=N(16\ — BA2+ 4N3 - \%), ) circle styles.

which is satisfied by\;=0.2609. This is the value that can the degree distribution, therefore th coefficient is 16, as
be extracted from the right panel of Fig.(8econd curve in the treelike case. At order 2, the texfif,) [upper sub-
from the lef. graph of Fig. 4b)] splits into two subgraphs in the presence
of plaguetteqFig. 6). The right subgraph is the same as in
the treelike case, yet the left yields a contributio® 2
+0(P?). Their multiplicities are 4(left) and 2 (right) sum-

It is easy to imagine that the preceding analysis yieldsying up to(3)=6. The resulting\\2 coefficient is therefore
different results when triangles and loops of length 4 are_1g Although different subgraphs enter into the develop-
present. Caldareliet al. [17] have classified loops of length ment also at the orders3, the coefficients appearing in the
4 in a complex network intprimary andsecondary quadri-  equation determining the epidemic threshold do not change.
laterals (Fig. 5). In the former case, the external vertices The second-order subgraphs for the Kagomé lattice are
which the loop is composed of are all nearest neighborgiepicted in Fig. 7. Both’s contributions afe+O(P?). The
whereas secondary quadrilaterals are plaquettes, the externala inyolving a triangle appears six times whereas the right
nodes being two nearest and a second neighbor. With thesghgraph has multiplicity 4. We therefore obtain the same
concepts, the loop structure of a strictly homogeneous grap8econd-order coefficient as for the square lattice. An analysis
can qu_antltatlvely be characterized as follows: By .choosmgor the higher-order subgraphs yields no difference with re-
an arbitrary node, the number of edges between its neareghect to the square lattice. These two cases are therefore
neighbors is denoted y. Q, andQ, shall refer to the num- equivalent at the two-step level fér<1.
ber of primary and secondary quadrilaterals. For the net- ', taple |1, we summarize the coefficients for these two
works depicted in Figs.(b)-1(d), we report the correspond- |atices as well as the ringFig. 1(d)]. The full developments
ing values in Table I. are given in the Appendix.

Let us now look at the subgraph development for the  of coyrse the idea is now to extend E@) such that it
square lattice whereby we focus on the important changegggs for all the investigated graphs. Our findings suggest
with respect to the treelike case. The reader interested in thg st the local ordering properties enter in the following way

full elaborations is referred to the Appendix. We have al-jyig the equation determining the epidemic threshold
ready noticed that the first-order term is fully determined by

B. Graphs with loops

1=N[16N - (6+2E+Qy + QN*+ (4 + QN -7,

| 9)
------ However this is not the full story. What about loops of
i length 5? Let us argue why they do not enter in the frame-
e o b o N .
: TABLE II. Coefficients of the two-step threshold equation for
5 our networks having in commoR(k) = 8,4, but differing in the loop
Tt pattern.
A" coeff. n=1 n=2 n=3 n=4
FIG. 6. Second-order subgraphs not involving the central nodé&quare lattice 16 -10 4 -1
as filled circle for the square lattice. To first order B the left ~ Kagomé lattice 16 -10 4 -1
subgraph yields the contributionP2 the right oneP. For further  Ring 16 -16 6 -1

explanations, see Fig. 4.
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(a) (b) (c)

FIG. 8. Loops of length 5 involving different hierarchies of
nearest neighbors. Connections emanating from the central node
(filled circle) are drawn as a solid line, links going from nearest
neighborgempty solid circlg to other nearest neighbors or second
neighbors(empty dotted circleare dashed, and second neighbors
are connected by a dotted line. The pentalat@jihvolves nearest
neighbors only, inb) the loop traverses a second neighbor and in
the one in(c) lacking in internal connections, a link between two
second neighbors serves to close it.

work of a two-step description. Although there exist such -6 ‘6
loops involving only first and second neighbdfEgs. §a)

and fEl(bb)L '::_may aISOObbe _closled Onlﬁl between ?_NO Sec_ondcircleg and second neighbokempty dotted circles, vertices-3,
neighbors[Fig. §0c)]. VIOUSly Such a connection IS 1g- -1,1,3) of an arbitrarily chosen nodéilled circle, node 0 are
nored at the two-step level. In the language of graph theor)érranged in a one-dimensional lattice with additional connections

[31], the latter case corresponds tofandamentalloop  penyeen sites 3 units apart. The séls{-1,1,3,2} as well as
whereas the former examples can be reduced to loops @f -3 —1, 1,-2} are forming tertiary quadrilaterals.

length 3 and 4. But whatever the number of hierarchies o
nearest neighbors involved in the formation of the loop is,
the point is the following. If the central node is infected at " —(4)= . .
time t, it can causally affect only vertices two links away, plying the presence oQy=13)=4 tertiary quadrilaterals and

corresponding to a chain of four links. Obviously, it matters »=(3)=6 secondary quadrilaterals. In a network of degree
whether the first and the last node of this chain are identicalk =4, quadrilaterals up to ordeK can, in principle, be

In this case, we have a loop of length 4. Otherwise it cannot®4N¢- ) ) . . . .

be distinguished whether the topology is fully treelike or if A one-dimensional lattice with additional connections be-

loops of length greater than 4 are present. Along these linedV€€n the nodesandi+3 for alli [instead ofi+2 as in the
it has to be expected that loops up to lengthedter within 1IN investigated up to now, Fig(d)] possesses the neigh-

an n-time-step description. In contrast, the presence oPorhood structure shown in Fig. 10, i.e., itis characterized by

higher-order quadrilaterals modifies the coefficients of EqE=Q1=0, Q2=8, Q3=2, andQ,=0. By applying our for-
(9). Figure 3a) shows what we shall call ertiary quadri- malism to this case and to a network that has fourth-order

lateral: the three nearest neighbors of the central node are &radrilaterals, Eq9) generalizes to

FIG. 10. This figure visualizes how the nearésimpty solid

nodes share two common vertices as nearest neighbors, im-

connected to another common node. Obviously, the presence 1=\[16\ = (6 + 2E + Qq + Q,)\2
of a tertiary quadrilateral implie®,=(3) =3 secondary quad- . .
rilaterals. In afourth-order quadrilateral[Fig. 9b)], four +(4+Q1+ Q)N = (1 + QN (10)

the coefficients of order 3 and 4 being modified only.

PR R NN

- ’

o
[
et
.
’

C. Introducing disorder

. ) The networks considered up to now lack in the small
world phenomenon, a property characterizing social net-
works on which the epidemic process is occurring. By start-
ing with a ringlike network[Fig. 1(d)] and repeating the

rewiring procedure described in Sec. Il a certain number of
(2) (b) times, we obtain graphs of fixed degrée4 that are simul-
taneously highly clustered, and in which the average distance

FIG. 9. Quadrilaterals of orders 3 and 4. Thea,n=3; b,n  between pairs of nodes is smé3].

.
.
.
.
,

=4) nearest neighborgempty solid circles of the central node The left part of Fig. 11 reports the simulation result for the
(filled circle) share another vertexlotted empty circlpas nearest equilibrium prevalence of the epidemic process on the disor-
neighbor. dered ring. Systems of si2¢=10* were used, and the rewir-
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FIG. 11. Steady-state prevalence for the ring-type network having undergone different degrees of randomization. Left: Simulation result
for the original networkO), its partially rewired versioiiA), and the entirely random netwotk). Right: The single-step site approxima-
tion (thin solid) treats all the networks in question identically whereas at the two-step level, the Molloy-Reed ngtottel), the partially
randomized ringsolid), and the fully ordered ringdashed appear in the same sequence as in the left panel.

ing procedure was repeatad 100 times. For completeness, 1=\[16\ - (6 + oF + 6 + 6))\2 +(4 +6 + 6))\3
the two limiting casegfully ordered ring and random net- L2 1o

work) are also depicted. This panel shows the considerable -1 +64))\4]_ (11
effect on the steady state spreading behavior of the rather
small number of rewirings. For our partially randomized ring, we ha&=2.883,Q,

The right panel of this figure depicts the one-step site_1 886,0,=1.958, andQ,=Q,=0, leading toh,~ 0.2892
s e . e _ T y do— 4. y 3— 41— Y, c— VY. .

apprommatlo.r(predwtmg)\c—0.25 for aII. cgse)sand the nu This value corresponds approximately to where the corre-
merical solutions of the two-step descripti). It has to be sponding curve in the right part of Fig. 11 meets thaxis.
noted that for the partially rewired ring lacking in strict ho-
mogeneity, Eq(5) was solved at every node, therefore in-
volving the setP;(x), i=1,2, ... N, the resulting prevalence V. ARBITRARY DEGREE
being given by 1N=N,P;(1). Again at the double-step level,

the networks in question are treated differently, as it could The implications of our two-step description h{;\ve been
. Illustrated for homogeneous networks of degree 4 in the pre-

to the partially randomized ring lies closer to the original gedlng section. T_h_|s was a convenient ch_mce as ther_e exists

. ) . : o a number of familiar simple graphs obeyiRgk) = &4, dif-
network in proportion to the _S|mulat|on result. Thl_s is due toferently ordered. Of course our formalism enables s to gen-
the small world property which can have a co_nS|dera_bIe eféralize the obtained threshold conditigkD) to an arbitrary
fect on the location of the onset of the epidemic. ObV'OUSW’degreeK, which is the subject of this section.

the simulation result uncovers the real effect of this global | ot ;s again look at a fully treelike network, using Egs.

topological property whereas at the two-step level, it is the(6) and(8) as guidelines. Tha? coefficient 16 incorporating
slightly poorer loop structure that accounts for the correpe degree distribution is simply 44 since (f,)=4P
sponding shift in the epidemic threshold. +0(P?) and « runs from 1 to 4. The remaining coefficients
Of course the quantitiek, Q;, Q, Qs, andQ, are N0 _g 4 and -1 correspond to the binomial coefficients
longer reasonable for a partially randomized network due tq(4) (4), and 42). Indeed the threshold equation for a tree-

the lack of strict homogeneity, but rather its local orderingjike network of degre& derived by Eq(6) is
properties can be quantified by averaging these values over
the entire network. The emerging topological paramekers K
1=\ )\KZ—E)\"< )
K

andQ, (i=1,2,3,4 are essentially thelustering coefficients (12)

[up to the factoK(K—1)/2=6] andgrid coefficientsi.e., the
densities of triangles and loops of lengtH3117]. We may Repeating the graph developments for homogeneous net-
therefore replac& and the number of quadrilaterglsf the ~ works characterized by different values Kf and varying
different ordergin Eq. (10) by its mean values, yielding the loop structures reveals that the very same correction terms
following estimate for the epidemic threshold condition enter into Eq(12), yielding

k=2
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TABLE Ill. Subgraph development for the square lattice. All the terms in(Bgare symbolized by a specific subgraph, its order being
given by the number of filled circles. The\? coefficient —10, as an example, is obtained by summing the va@oR$ contributions, that
is, 2X 4+1X 2+0x 4=10, and the negative sign comes from E&J. The A% and\\* coefficients are unaltered with respect to the treelike
topology although other subgraphs enter into the development.

order (n) 1 2 3 4
subgraph
o ® )
fos @
o ® & )
¢
contribution 4P + O(P?) 2P + O(P?) P+ O(P?) P+ 0O(P?)
multiplicity 4 4 4 1
subgraph
® ®
e
d & d )
contribution P+ 0O(P?) 2P? + O(P?3) 5P3 + O(P%)
multiplicity 2 4 4
subgraph
Greeeserneaionny @rrerere
UMY, S b )
contribution 9P% + O(P3) 18P3% + O(P*)
multiplicity 4 2
A A™-coeff. 16 -10 4 -1
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TABLE IV. The subgraphs of all the orders for the Kagomé lattice. See Table Il for how the coefficients are obtained and as far as further

details are concerned.

order (n) 1 2 3 4
subgraph
.............................. )
contribution 4P + O(P?) P+ O(P?) P+ 0O(P?) P+ O(P?)
multiplicity 4 6 4 1
subgraph
< p’-’ -----
e -
contribution P +0O(P?) 5P% + O(P3) 8P* + O(P®)
multiplicity 4 4 4
subgraph
contribution 8P% 4+ O(P%)
multiplicity 2
A - A%-coefl. 16 -10 4 -1
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TABLE V. The full subgraph development for the ring-type network. See Table IlI for the derivation ahtheoefficients. With respect
to the two lattices treated above, the? and\\? coefficients are —16 and 6.

order (n) 1 2 3 4
subgraph
contribution 4P + O(P?) 2P + O(P?) P+ 0O(P?)
multiplicity 4 4 1
subgraph
contribution
multiplicity
subgraph
contribution P+0O(P? 3P? + O(P?) 2P% + O(P%)
multiplicity 1 3 2
subgraph
contribution P+0O(P?) 5P% + O(P3)
multiplicity 3 1
A - A"-coeff. 16 -16 6 -1
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K tion that takes into account temporal correlations. This ap-
1=)\) O(K- 1)K\ -O(K - 2)[( ) +2E+Qq+ Qz] A2 proach revealed to be very prolific if one wants to unravel
2 the role of loops of short length in the contact network re-
K garding epidemic spreading. Indeed it leads to a subgraph
[( ) development where the complete graph involves the connec-
K tivity patterns of two hierarchies of nearest neighb@fsan
arbitrarily chosen node Within this approach serving to
Y track a probabilistic system, the local topology, be it treelike
+ QK}( N[, (13
or be loops of length 3 or 4 present, therefore enters very
_ _ _ naturally. The analytically obtained condition for the location
where E is again the number of connections between they the onset of the epidemic then serves as a guiding equa-
nearest neighbors of an arbitrarily chosen na@gdenotes jon elucidating the role of clustering and gridlike ordering in
the number of quadrilaterals of orderand®(x) is the step epidemic spreading.

K
+®(K—3){<|;> +Q1+Q3])\3_E O(K-«)

k=4

function defined by In principle, it is possible to apply our two-step descrip-
; tion to more complex networks where different degrees are
lifx=0 .
O(x) = i present, uncovering the effect of the degree-dependent den-
0 otherwise. sities of triangles and loops quadrilaterals on the critical

The equation that describes the role of local ordering in &@lue. Likewise, loops of length up tonZare expected to
disordered network subject ®B(k)=&« is again obtained €Nter within ann-time-step description, also providing a
simply by replacing the corresponding quantities by its meaatural classification of them. However the major insight
vaIues(EHE Q'Ha) in Eq. (13), providing an improved galne_d by the strategy of epr(_)rlng_ temporal correlations is
estimate for t,hel epidlemic th.resh(,)ld best illustrated as it was done in this paper.
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discrete-time version of the simple SIS model, which is in-
fected nodes recover with probabilityt, and susceptible
nodes become infected with probabilit if they are con-
nected to at least one infected nearest neighbor. As far as the Here we show the complete subgraph developments for
connectivity patterns underlying the population are con-the square latticéTable IIl), the Kagomé lattic§Table V)
cerned, we chose homogeneous networks as starting poiand the ring-type network of Fig(d) (Table V). Every sub-
and introduced an arbitrary degree of disorder by an appragraph corresponds to a term in E®), its contribution is
priate rewiring procedure not affecting the degree distribu-obtained by the procedure illustrated in Sec. IV A. The'
tion P(K) =& . coefficient of the threshold equation is obtained by summing

Describing the epidemic dynamics of the entire popula-all the O(P) contributions(taking into account the multiplici-
tion as a Markovian process, we derived a two-step descrigies) of the nth order subgraphs.
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