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Abstract. Words in humans follow the so-called Zipf’s law. More precisely, the word frequency spectrum
follows a power function, whose typical exponent is β ≈ 2, but significant variations are found. We hy-
pothesize that the full range of variation reflects our ability to balance the goal of communication, i.e.
maximizing the information transfer and the cost of communication, imposed by the limitations of the
human brain. We show that the higher the importance of satisfying the goal of communication, the higher
the exponent. Here, assuming that words are used according to their meaning we explain why variation
in β should be limited to a particular domain. From the one hand, we explain a non-trivial lower bound
at about β = 1.6 for communication systems neglecting the goal of the communication. From the other
hand, we find a sudden divergence of β if a certain critical balance is crossed. At the same time a sharp
transition to maximum information transfer and unfortunately, maximum communication cost, is found.
Consistently with the upper bound of real exponents, the maximum finite value predicted is about β = 2.4.
It is convenient for human language not to cross the transition and remain in a domain where maximum
information transfer is high but at a reasonable cost. Therefore, only a particular range of exponents should
be found in human speakers. The exponent β contains information about the balance between cost and
communicative efficiency.

PACS. 87.10.+e General theory and mathematical aspects – 89.75.Da Systems obeying scaling laws

1 Introduction

Word frequencies in human language arrange themselves
according to the so-called Zipf’s law. If P (f) is the pro-
portion of words whose frequency is f in a given sample
(e.g. a text), we say the sample follows Zipf’s law [1,2] if

P (f) ∼ f−β (1)

where β > 0.
Although different functions have been proposed for

modeling word frequencies [3,4], the fundamental trend
described by equation 1 seems to have no known exception
in humans. As far as we know, Zipf’s law is a universal
property of world languages [5]. We have typically β ≈ 2
in word frequencies of single author samples [6–9], but
significant deviations from that value have been reported:

– β > 2 in fragmented discourse schizophrenia. The
speech is characterized by multiple topics and the ab-
sence of consistent subject. The lexicon of such a text
may be varied and chaotic [10,11]. β ∈ [2.11, 2.42] is
found. That type of schizophrenia is found in early
stages of the disease but not all early stages follow
that pattern.

a e-mail: ramon@pil.phys.uniroma1.it

– 1 < β < 2 in advanced forms of schizophre-
nia [1,10,11]. Texts are filled mainly with words and
word combinations related to the patients obsessional
topic. The variety of lexical units employed here is re-
stricted and repetitions are many. β = 1.6 is reported
in [10,11].

– β = 1.6 in very young children [12,10]. Older children
conform to the typical β ≈ 2 [13].

– β = 1.7 in military combat texts [11,14].
– β = 3.35 for nouns in multiauthor collections of

texts [15]. Smaller values of β but still above the typi-
cal β = 2 have been found in nouns from single author
samples. More precisely, β ∈ [2.15, 2, 32] [5].

– Exponents larger than β ≈ 2 can be obtained as a
result of deficient sampling from a text with the typical
β ≈ 2 [10,11].

Therefore, exponents seem to be constrained to a very par-
ticular domain. More precisely, β ∈ [1.6, 2.42], excluding
β = 3.35 for nouns because it is restricted to a particu-
lar word type. Is such a particular domain a mere conse-
quence of our limited knowledge or is there a theoretical
explanation going beyond our limited capacity for study-
ing all the possible atypical forms of language? Is there
a barrier preventing speakers from crossing the lower and
upper bounds of the interval of empirical values of β? The
remainder of the paper is devoted to shed light on the
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previous questions. Notice that there could be a trivial ex-
planation for the variation of β, i.e. random fluctuations
around a mean β = 2. Although that could be a reason-
able hypothesis for the variation in normal adult speakers,
the problem is that schizophrenics, children and military
combat texts do not seem to fill the continuum from β = 2
to β ≈ 1.6. There seems to be a gap. Furthermore, it is
not clear why variation should would be approximately
constrained to the interval [1.6, 2.4]. Again, our limited
knowledge or publications bias (i.e. the tendency to re-
port only the clearly anomalous cases) could be showing
ghost gaps and barriers. At this point, two ways can be
taken: performing studies in larger sets or gaining theo-
retical knowledge about the variation of Zipf’s law. The
latter is the aim of the present paper.

We assume that T is the length of a text in words
(so f ≤ T ). In order to understand the depth of those
questions, it is important to bear on mind that the value
of β when T → ∞ has consequences based only on equa-
tion (1). More precisely, β > 1 is needed if P (f) must be a
probability function, β > 2 if f must have finite mean and
β > 3 if f must have finite variance [16]. The minimum
and maximum real value of β are far from the threshold
exponents in every requirement, suggesting there may be
a further reason. We need further information than word
frequencies in order to constraint the range of possible
values. We will show that taking into account that words
have meaning is the key.

Atypical exponents are the Achilles heel of the null
hypothesis and models that have been propose for Zipf’s
law. Here we focus on two null hypothesis: intermittent
silence and Simon’s model. By null hypothesis, we mean
processes lacking some fundamental aspect of why and
how human words are used. For instance, intermittent si-
lence and Simon’s model neglect that words are used ac-
cording to their meaning. The more meanings a real word
has, the higher its frequency of use [17–19]. The distinction
between null hypothesis and model in the strict sense is
not tight. What some researchers may call a null hypoth-
esis due to its extreme simplification of the real problem,
may be called a model in the strict sense by researchers
considering those simplifications mere consequences of a
high level of abstraction. In other words, what some re-
searchers may consider neglectable, can be unneglectable
for others. Some researchers may consider intermittent si-
lence or Simon’s model not even suitable hypothesis for
Zipf’s law. Specially for the latter researchers, it is im-
portant to bear on mind that the believe that Zipf’s law
in human words can be explained by intermittent silence
is widespread in science [20–24], so the present discussion
is well-motivated. The terms null hypothesis and model
should be read with a flexibility depending on the point
of view one is taking. The aim of what follows is not to
reach an agreement about how intermittent silence and
Simon’s model should be classified, but to call the atten-
tion to the fact that those models can not explain the
variations in the exponent reported above.

Intermittent silence consists of generating a random
sequence of characters including letters (or phonemes) and

blank spaces (or silences) [24–28]. A words is defined as
a sequence of letters between blanks. Intermittent silence
can not consistently explain the values of 1 < β < 2 in
schizophrenics where β is clearly far from 2 [1]. If L is
the set of letters, the exponent of an intermittent silence
model as in [24] is

βI =
log |L|

log(|L| + 1)
+ 1, (2)

where |L| is the cardinality of L. It follows from equation 2
that 1 < βI < 2 (|L| ≥ 1 is assumed) and βI < 1.9 implies
|L| ≤ 5. Therefore, such disease implies a repertoire of let-
ters (or phonemes) radically smaller from that of regular
speakers, which is absolutely false. Simon’s model is based
on reusing the most frequently used words. The model
adds a word to a text at each iteration. With probabil-
ity ψ, the word added is such that has not appeared be-
fore in the text. With probability 1−ψ, the word added is
chosen at random from all the words in the text. The dis-
tribution of the process follows equation (1) with [29,30]
exponent

βS = 1 +
1

1 − ψ
. (3)

We have βS > 2 for ψ > 0 [29], so Simon’s model can not
directly account for the word frequency distribution in all
cases of schizophrenia.

A theory of word frequencies and human communica-
tion implies answering to four different questions:

1. Why words follow arrange according to Zipf’s
law (Eq. (1)).

2. Why humans typically choose β ≈ 2?
3. Why is there variation in β?
4. What are the limits of that variation?

Many answers have been proposed for Questions
1-2 [1,4,5,8,15,24–27,29,31–44]. As far as we know, Ques-
tions 1 and 2 have only been answered assuming that
words are used according to their meaning in [38] and [15],
respectively. Choosing β ≈ 2 could be the optimal solu-
tion for a conflict between hearer and speaker needs [38].
The present paper is focused on Questions 3 and 4.

In the present paper we provide an explanation for the
limits of the variation in β which is consistent with the
real range of exponents. The models starts with a math-
ematical formalization of the goal and the constraints of
communication and a very basic assumption: words are
used according to their meaning.

2 The model

We assume a general communication system map-
ping signals to stimuli. We have a set of n signals
S = {s1, ..., si, ..., sn} and a set of m stimuli R =
{r1, ..., rj , ..., rm}. Here we assume that signals are approx-
imately equivalent to words and stimuli are the basic in-
gredient for constructing word meaning. We assume that
signals connect to stimuli and that connections are defined
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by a binary n ×m matrix A = {aij} where aij = 1 if si

and rj are linked and aij = 0 otherwise. What we mean
here by stimuli can be explained in more detail. Different
types of experiments have shown that words are associ-
ated to the activation of different brain areas [45]. Gener-
ally speaking, nouns tend to activate visual areas. Verbs
tend to activate motor areas if the corresponding action
can be performed by the individual and visual areas other-
wise. The activated areas are associated to different types
of stimuli experienced with the word. Let us take one of
the definitions of the Webster’s Revised Unabridged Dic-
tionary (1913)1 for the word ‘write’: “to inscribe on any
material by a suitable instrument”. In our view, the verb
‘write’ is associated to the motor stimuli of the action of
writing and the visual (tactile, olfactive,...) stimuli of the
instruments used for writing. The construction of a com-
plex meaning would involve a structure combining differ-
ent stimuli. From that point of view, a words in S does not
refer to stimuli in R, but is merely associated to them. We
do not claim that words in S refer to stimuli in R via A al-
though they can. We do not use the term reference because
it is stronger than association. In our example, ‘write’ can
only refer to the motor stimuli of the action. ‘write’ can
not be used for referring to the instrument used for writ-
ing although it is associated to it. The action and the in-
strument are both stimuli involved in the construction of
the complex meaning of the verb ‘write’. Defining word
meaning is an open problem in different fields ranging
from cognitive science to philosophy. In our view, complex
meaning would emerge from the interaction between dif-
ferent stimuli. Referential associations are a subset of the
associations defined by A. It makes sense to assume that
the more stimuli a word is associated to, the highest the
probability of using that word. It is important to notice
that when we say a word has no meaning we are usually
saying that it has not referential power but that does not
imply that word has not associations with stimuli. Our
framework is not inconsistent with the existence of words
with no apparent meaning, such as prepositions, conjunc-
tions or articles. Real words with no apparent meaning
are the words with the highest frequencies. The five most
frequent word in the British National Corpus2, a large col-
lection of text samples, are ‘the, ‘of’, ‘and’, ‘to’ and ‘a’.
The framework here predicts that the most frequent words
would have the largest amount of connections with stimuli
in R. Since those connections are merely associative and
sometimes referential there is no inconsistency here. Fur-
thermore, that high amount of associations may underly
the absence of referential power or meaning of that words.
The uncertainty associated to the interpretation of highly
connected words is so large [46] that reference can not be
effectively attributed. Words with no meaning may have
two different origins: words that have no links and words
having too many links. It makes sense to think that words
with no meaning may have an excess of connections rather
than a lack of it, although those connections could be very
weak due to the high frequency of the words involved [47].

1 www.dict.org
2 www.natcorp.ox.ac.uk

We define the probability that si a rj are associated
by the communication system as

p(si, rj) =
aij

||A|| , (4)

where ||A|| is a normalization factor defined as

||A|| =
n∑

k=1

µk (5)

and µi =
∑m

k=1 aik is the number of stimuli of si as in [15].
Replacing equation (4) into p(si) =

∑m
j=1 p(si, rj) we get

p(si) =
µi

||A|| . (6)

Similarly, replacing equation (4) into p(rj) =∑m
k=1 p(sk, rj) we get

p(rj) =
ωj

||A|| , (7)

where ωj =
∑m

k=1 akj is the number of signals of rj . Notice
that here p(rj) is not independent of A as in [38].

Equations (6) and (7) contain our basic assumption
that words are used according to their stimuli. More pre-
cisely, equation (6) states that a word is used with a fre-
quency that is proportional to its number of stimuli. The
choice of that extremely simple equation is supported by
that the following points:

– Various models are capable of reproducing Zipf’s with
that assumption [15,46].

– Word frequency and number of meanings are posi-
tively correlated. It is reasonable to think that our
stimuli here are also positively correlated with word
frequency [17–19].

– Since we do not know the real relationship between
word frequency and the stimuli defined here, we choose
proportionality for simplicity reasons.

If P (k) is the proportion of signals having k links we
may write equation (6) as

p(si|µi = k) =
k

n 〈k〉P
, (8)

where n is the number of signals and 〈...〉P is the expecta-
tion operator over P = {P (1), ..., P (k), ...P (m)}. Follow-
ing equation (4), the entropy (or uncertainty) associated
to the interpretation of si is H(R|si) = log k if µi = k [15].
Thus, H(R|S), the average entropy associated to the in-
terpretation of a signal [48], defined as

H(R|S) =
n∑

i=1

p(si)H(R|si) (9)

becomes

H(R|S) =
〈k log k〉P

〈k〉P
. (10)
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The symmetric, H(S|R) becomes

H(S|R) =
〈k log k〉Q

〈k〉Q
, (11)

where Q = {Q(0), ..., Q(k), ..., Q(n)} and Q(k) is the pro-
portion of stimuli with k links. We are assuming that Q(k)
is defined for k = 0 while P (k) does not because we allow
unlinked stimuli but do not allow unlinked signals. Here
we take the simplest distribution for Q, that is

Q ∼ binomial

( 〈k〉Q
m

,n

)
. (12)

Similarly, the signal entropy

H(S) = −
n∑

i=1

p(si) log p(si) (13)

can be written as

H(S) = log(n 〈k〉P ) − 〈k log k〉P
〈k〉P

. (14)

Merging equation (10) and (14) we get

H(S) = log(n 〈k〉P ) −H(R|S). (15)

We define a function Ω that any biological communica-
tion system must minimize. The function is a combination
of the goal of communication, that is, maximizing the in-
formation transfer [48] between the set of signals and the
set of stimuli, I(S,R), and the constrains imposed by the
biology of the communication system, which tend to min-
imize H(S), the entropy associated to signals [38]. H(S)
is the cost of the communication. Taking a linear combi-
nation for simplicity, we define Ω, the energy of a commu-
nication system [38], as

Ω(λ) = −λI(S,R) + (1 − λ)H(S), (16)

where 0 ≤ λ ≤ 1. λ is a parameter controlling the balance
between −I(S,R) andH(S). When λ = 0 the goal of com-
munication does not matter at all and the same happens
to the constraints of communication when λ = 1.

If p(si) ∼ µi (Eq. (6)) and Zipf’s law (Eq. (1)) are
assumed, it follows that P (k), the proportion of signals
with k links obeys

P (k) ∼ k−β . (17)

We assume a fixed P (k) or P (f) given the surprising ten-
dency of human language to arrange according to Zipf’s
law even in the atypical cases. Although there is variation
in β, equation (1) has no known exceptions. Various mod-
els show that if the constraint of equation (17) is removed
and Ω(λ) is minimized, Zipf’s law is recovered for λ = λ∗,
where λ is a critical value of λ [38,46].

We are interested in studying β∗, the value of β ob-
tained when minimizing Ω(λ) for different values of λ
while n and m are kept constant. Applied in the inverse

sense, that is also a way of discovering λ given the value
of β of a particular communication system (when n and m
are known and constant). We assume that β∗ is a single
valued function. The numerical calculations in Section 3
make sure that there is a single value of β minimizing Ω.
We may write equation (16) as

Ω(λ) = (1 − 2λ)H(S) + λH(S|R) (18)

using I(S,R) = H(S) − H(S|R), where H(S|R) is the
average entropy associated to choosing a certain signal for
a certain stimulus [48]. Trivially, Ω(λ) minimizes H(S|R)
if λ > 0. Notice that, simultaneously, H(S) is minimized
if λ < 1/2 and maximized if λ > 1/2. In other words,
the cost of communication is minimized for λ < 1/2 and
maximized for λ > 1/2. That cost is irrelevant for λ = 1/2.

Notice that the outcome of minimizing Ω(λ) when
λ = 1/2 is every stimulus with exactly one non-necessarily
distinctive signal (if n ≥ m). When λ > 1/2 the behaviour
of the system should be similar, but taking into account
that maximizing H(S) implies that the signal linked to
each stimulus should be distinctive because the H(R|S)
insideH(S) (recall Eq. (15)) is being implicitly minimized.
Thus, it is easy to see that equation (17) (or equivalently
Eq. (1)) with β → ∞ would hold when λ > 1/2. Since
as far as we know real human speech shows finite β, the
interesting values of λ are the large ones that still satisfy
λ < 1/2. We will show that finite values of β are only
found in the range 0 < λ < 1/2. Furthermore, we will
show that values are small.

3 Results

We study β∗, the value of β in equation (17) minimizing
Ω(λ) versus λ for different values of n (the number of
signals) and m (the number of stimuli).

Ω(λ) is minimized numerically by exploring exhaus-
tively the interval [0, βmax] where βmax = 10 with a reso-
lution ε = 10−2 for β and λ. We have seen that β∗ should
diverge beyond λ = 1/2 at the very latest. Since Ω(0)
gives a minimum in (0, βmax) (we assume that is the
global minimum), β∗ must diverge at some λ between 0
and 1/2. Therefore, we need a method to distinguish true
divergences from the limitations of exploring the inter-
val [0, βmax]. We define β∗(λ) as the value of β∗ as a func-
tion of λ (when n and m do not change). Thus, we ex-
plore λ from 0 to 1 (the order of exploration is important)
and whenever the value of β minimizing Ω(λ) is βmax, we
conclude β∗ → ∞ only if one of the following conditions
is true:

1. β∗(λ− ε) 
 βmax. That condition is supported by the
a priori expectation that β∗ must jump at a certain
value of λ ≤ 1/2 from a finite value to infinity.

2. β∗(λ− ε) diverges according to the condition 1 or 2.

Ω is calculated assuming the total number of links in A
is ||A|| = n 〈k〉P in equation (15). That is an approxima-
tion because the right side of the previous equation is a
continuous value while the left side is a discrete one. The
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Fig. 1. I∗(S, R) versus λ for m = 10 (A), m = 102 (B), m = 103 (C) and m = 104 (D). I∗(S, R) is the information transfer
for β = β∗, β∗ is the value of β minimizing Ω(λ), β is the exponent of Zipf’s law, Ω is the energy function that communication
minimizes, n is the number of signals and m is the number of stimuli. λ tunes the balance between communicative efficiency and
the cost of communication. When λ = 0 communication is totally balanced towards saving the cost of communication whereas
when λ = 1 is totally balanced towards the communicative efficiency. Natural logarithms are used for showing I(S,R). The
series for m = 10000 and n = 10 are not shown due to the limitations of the fast calculations used.

approximation is useful in order to run calculations faster.
Nonetheless, that approximation may lead to inconsistent
results. That is why the series for m = 10 and n = 10000
are not shown in any of the following figures.

The value of I∗(S,R) undergoes a sudden transition
to maximum I(S,R) when λ = λ∗ is crossed (Fig. 1).
Interestingly, the cost of the communication, H(S) also
becomes maximum after the transition (Fig. 2). The
sharpness of the changes when λ = λ∗ suggests a phase
transition to maximum I(S,R) and maximum H(S) as in
the model in [38].

β∗ grows with λ, but it does not behave gradually in
the whole domain (Fig. 3). There is a critical value of λ, λ∗,
beyond which β∗ diverges. That divergence is non-trivial
since it does not necessarily happen when λ∗ ≥ 1/2.

Increasing m tends to decrease the maximum finite
value of β∗ β ≈ 2.41 (Fig. 4). Interestingly, the maxi-
mum finite value of β∗ reaches the apparent upper bound
β ≈ 2.41 found in real exponents. Furthermore, the min-
imum value of β∗ is given by λ = 0. β > 1.5 is obtained
in Figure 5 for sufficiently large m, suggesting there is a
minimum value for β∗ even when maximizing I(S,R) is
neglected (that is, when λ = 0). Here, β is explored with
a resolution of 10−3. Actually, the value of β minimizing
Ω(0) grows with m (Fig. 5) but very slowly. Notice that
β∗ is independent of n in that case since n is kept constant
during the minimization process.

Neglecting the fact that signals are linked to stim-
uli leads to totally different results. Now we assume
p(si) > p(si+1) (for 1 ≤ i < n) without loss of general-
ity. If

p(si) ∼ i−α (19)

then it follows [3,7] equation (1) with

β = 1/α+ 1. (20)

Thus, we calculate α∗, the value of αminimizing H(S) and
obtain β∗ using equation (20). Now, β∗ depends on n, the
number of signals. R is irrelevant here. H(S) is minimized
if and only if p(si) = 1 if i = 1 and p(si) = 0 otherwise.
That configuration is obtained by equation (19) when α→
∞, so using equation (20) we get

β∗ = lim
α→∞

1
α

+ 1 = 1 (21)

β∗ = 1 is very different from the β∗ > 1.5 obtained when
stimuli are relevant (Fig. 5). Neglecting that words have
meaning can not explain the minimum value of β ≈ 1.6
found in human language.

4 Discussion

Here we have assumed Zipf’s law and have studied the
effect of tuning the balance between the goal (I(S,R))
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Fig. 5. β∗, the value of β minimizing Ω(0) = H(S) versus m.

and the cost (H(S)) of communication. We have used the
parameter λ for controlling that balance. λ = 0 implies ne-
glecting the goal of communication in the model. It is im-
portant to notice that the communicative efficiency is not
absolutely destroyed when λ = 0. Zipf’s law from equa-
tion (17) means that some signals have a few links even
when β < 2, which favours implicitly the goal of commu-
nication. The model in [15] suggests that the assumption
of Zipf’s law (Eq. (17)) could be the outcome of implic-
itly favouring the goal of communication. Recall P (k) and
Q(k) are, respectively, the proportion of signals and stim-
uli having k links. That model explains why scaling would
be expected if the entropy of P = {P (k)} is free and max-

imized, Q = {Q(k)} is also free and

n∑

i=1

H(R|si) = 〈log k〉P (22)

is constrained. The latter constraint is similar to the goal
of communication used here. Here maximizing I(S,R) =
H(R)−H(R|S) implies minimizing H(R|S) which is turn
similar to constraining 〈log k〉P (Eq. (22)) to a small value.

Figure 5 shows there is a non-trivial lower bound
for β∗. Minimizing Ω(0) = H(S) = log(n 〈k〉P ) −H(R|S)
implies a conflict between minimizing 〈k〉P and H(R|S)
that can not be resolved by and extremal value of β. That
may explain why real exponents do not cross the apparent
β ≈ 1.6 barrier (for sufficiently large m).

Two groups of schizophrenic patients with different
symptoms and different values of β have been found. The
growth of β∗ versus λ in Figure 3 suggests the group with
β < 2 is constrained by the cost of communication more
than normal speakers. Besides, the group with β > 2 could
be favouring the goal of communication (here the word
‘favouring’ does not imply a voluntary action) more than
normal speakers. It has been suggested that the notion
of the self, the distinction between speaker and hearer,
and more particularly the distinction between the sig-
nals that the individual generates as speaker and those
that he receives as hearer, is a fundamental component
of schizophrenia [49]. The latter is crucial since without a
proper notion of the self and a proper identification of the
receiver, communication may be balanced towards sav-
ing the cost of communication as much as possible, which
could be the case of schizophrenic patients with β < 2.
To sum up, schizophrenics with β < 2 would be saving
as much cost of the communication as possible where as
schizophrenics with β > 2 would be paying too much.

Child speech acts reported in [12] share β ≈ 1.6 with
schizophrenic speech with β < 2. The coincidence may
not be by chance. In both cases the model suggests the
cost of communication can not be overcome as in normal
adult speech. Obviously, the reasons are different. Chil-
dren unaware of the communicative value of their speech
or constrained by their brain limitations in a more funda-
mental way would balance communication towards saving
the cost communication as much as possible. Whereas in-
sufficient development is the reason of that particular bal-
ance in children, the loss of the perspective of the hearer
could be the reason in that type of schizophrenic patients.

The fact that military combat texts and some chil-
dren and schizophrenics have similar exponents suggests
that those texts could be shaped by an atypical balance
saving the cost of communication, or equivalently from
equation (16), dissociated from the goal of communica-
tion more than normal adult speakers. The possibility
that the actual mechanism is the same as in children or
schizophrenic patients can not be denied. No matter how
different could be the mechanisms arranging word frequen-
cies in children, schizophrenic patients (with β < 2) and
military combat texts, all three systems seem to obey a
common principle: minimizing H(S).
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We have seen that tuning the balance between the goal
of communication and the cost of communication may lead
to a non-gradual behaviour of β∗, I∗(S,R) and H∗(S).
Interestingly, increasing λ beyond λ∗ has no effect. The
model presented here explains why human language max-
imizes the communication transfer, although H(S) is not
maximum and β is finite.

The model shows that it is not necessary to have λ = 1
for having the maximum H(S), the cost of communica-
tion. Furthermore, maximum H(S) is always obtained
when λ > 1/2. It is convenient for language to favour
the constraints of communication over the goal of com-
munication in order to escape from paying the maximum
H(S). Therefore, the real values of λ should be slightly
below λ∗. Since λ∗ < 1/2, it follows from the model here
that the constraints of communication must be stronger
than the goal of communication.

The value of β∗ for λ = λ∗ should be above the real
values if the hypothesis of minimizing Ω(λ) holds. All the
values of β reported in Section 1 are consistent with that
hypothesis when looking at Figure 3, acknowledging that
the values of n and m are not known.

5 Conclusion

The fact that P (k) must be a probability function imposes
that β > 1 when m → ∞. From the analytical point of
view, varying β beyond β > 1 with m → ∞ implies two
additional major events: finite mean (〈k〉P ) when β > 2
and finite variance (

〈
k2

〉
P
− 〈k〉2P ) when β > 3 [16]. Have

the previous major events something to do with the varia-
tions of the real exponent? There are two problems. First,
it is not clear why we should take m → ∞. The reper-
toire of stimuli in humans seems finite and it is no clear
why it should be large in the abnormal cases considered
here. Second, the smallest and the largest real value of β
(β = 1.6 and β = 2.42, respectively) lay approximately in
the middle of the major events above. Therefore, the mile-
stones above do not seem to be useful for understanding
the variation of β. In contrast, considering that words have
meaning, that is that signals are connected to stimuli, has
the key.

Besides the previous events, there seems to be no a pri-
ori obvious reason for the particular interval of variation of
β. Here we have shown that information theory may help
to find the answer. To sum up, minimizing H(S) could
be the reason for the lower barrier in β (Fig. 4 whereas
a sudden transition to β → ∞ beyond which language is
not possible, i.e. too expensive, could be the reason for the
upper barrier (Fig. 5). The upper barrier can be crossed
if the cost of communication is neglected, which may not
be affordable by the human brain. Language may tend to
maximize the information transfer but self-regulate in or-
der to avoid paying the maximum cost, or inversely, may
self-regulate in order to minimize the cost but keeping a
high information transfer. The two types of schizophrenia
would show what happens when that regulation fails. We
support the view of language as a complex system regu-
lating itself in order to fulfill different constraints [50,51].

If words frequencies had nothing to do with meanings,
there would be more freedom for the range of real expo-
nents. In contrast, exponents are constrained to a particu-
lar domain. Word meanings and specially the stimuli from
which meaning emerges are crucial. Assuming p(si) ∼ µi,
despite of its extreme simplicity, has a remarkable predic-
tive power. The large amount of models for Zipf’s law not
assuming that words have meaning should be reconsid-
ered [4,5,8,25–27,29,32–37,39,40]. Those models do not
seem to be capable of explaining why increases in the value
of β could turn in to increases in the communicative ef-
ficiency of the system (taking Figs. 1 and 3 together),
something that is evident when going normal adults with
β = 2 to nouns in single author texts with β = 2.15−2.32.
In contrast, the assumption that words frequency is cor-
related with word number of stimuli does it naturally (re-
call Figs. 1 and 3). The positive correlation between com-
municative efficiency and β is not easy to determine, be-
cause precise information theory measures, as far as we
know, have not been used for the atypical systems consid-
ered here. Those models may not be capable of explain-
ing either the natural bounds we find in the variation of
real communication systems. At present, only two mod-
els take into account that words have meanings [15,38].
Our work supports the idea that word meaning and bal-
ancing the communicative efficiency and the cost of com-
munication are crucial for understanding word frequency
distributions.

Our findings indicate that it is possible to get informa-
tion about the balance between communicative efficiency
and cost of communication from the word frequency dis-
tribution in a special way. The higher the exponent β, the
higher the weight of the communicative efficiency, but tak-
ing into account that β → ∞ does not imply that λ = 1,
since divergence is sudden beyond a threshold value of λ.
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14. A.N. Kolguškin, Linguistic and engineering studies in au-

tomatic language translation of scientific Russian into
English. Phase II (University of Washington Press,
Seattle, 1970)

15. R. Ferrer i Cancho, Physica A 345, 275 (2004),
doi:10.1016/j.physa.2004.06.158

16. G.A. Miller, N. Chomsky, in Handbook of Mathematical
Psychology, edited by R.D. Luce, R. Bush, E. Galanter
(Wiley, New York, 1963), Vol. 2

17. L. Reder, J.R. Anderson, R.A. Bjork, J. Experimental
Psychology 102, 648 (1974)
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