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Spectral methods cluster words of the same class in a syntactic dependency network
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We analyze here a particular kind of linguistic network where vertices represent words and edges
stand for syntactic relationships between words. The statistical properties of these networks have
been recently studied and various features such as the small-world phenomenon and a scale-free
distribution of degrees have been found. Our work focuses on four classes of words: verbs, nouns,
adverbs and adjectives. Here, we use spectral methods sorting vertices. We show that the ordering
clusters words of the same class. For nouns and verbs, the cluster size distribution clearly follows a
power-law distribution that cannot be explained by a null hypothesis. Long-range correlations are
found between vertices in the ordering provided by the spectral method. The findings support the
use of spectral methods for detecting community structure.

PACS numbers: 89.75.-k, 89.20.-a
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I. INTRODUCTION

A great amount of efforts has been recently devoted
to the study of complex networks [1, 2]. The topology
of systems as different as the Internet [3, 4], the World
Wide Web [5, 6, 7], biological [8] and social systems[9]
have been found to share similar statistical properties.
Many networks display both a distribution of distances
(defined as the minimum number of edges between two
vertices) peaked around a small characteristic value (i.e.
small world [10] effect) and the degree (defined as the
number of links per vertex) is distributed according to
a power law function. Driven by the widespread pres-
ence of these common features, much work has been done
in order to understand the basic mechanisms underlying
such universality [1, 11, 12, 13]. Instead, we focus on a
further characterization of networks using spectral meth-
ods that have been used for detecting communities in
complex networks [14, 15, 16, 17]. Community detection
techniques represent now a flourishing, inter-disciplinary
field [14, 18, 19, 20, 21, 22, 23, 24]. The aim of the present
paper is to show how spectral methods [14, 15, 16, 17]
cluster four classes of content words: verbs, nouns, ad-
verbs and adjectives in a Syntactic Dependency Network
[25] (SDN), which is a kind of linguistic network. The
topology of various instances of linguistic networks has
recently been under consideration by several studies. Ex-
amples include thesaurus networks based on the Roget’s
thesaurus [12, 26, 27] and networks based on Merrian-
Webster’s thesaurus [1], WordNet [26, 28], word associa-
tion networks [14, 26], word co-occurrence networks [29],
and SDNs [25]. The latter, as said above, will be the
target of the present article.

SDNs are constructed by collecting the syntactic de-
pendency links from a corpus, i.e. a set of sentences.
Syntactic links are defined according to the dependency
grammar formalism [30], a special case of a broad family
of grammatical formalisms [31, 32]. Dependency gram-
mar assumes that the syntactic structure of sentences
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FIG. 1: A) The syntactic structure of a simple sentence.
Words are the vertices and the syntactic dependencies are the
edges of the graph. The proper noun ’John’ and the verb ’has’
are syntactically dependent in this sample sentence. ’John’ is
modifier of the verb ’has’, which is its head. Similarly, the
action of ’has’ is modified by its object ’apples’. Here we
assume the graph oriented with edges pointing from a modifier

to its head. B) Mapping the syntactic dependency structure
of the sentence into a global syntactic dependency network.

consists of vertices (words) and word pairwise connec-
tions (syntactic dependencies). In this approximation, a
dependency link connects a pair of words representing
an edge of the graph. In the simple sentence “John has
apples”, “John” is linked to “has” and “apples” is linked
to “has”. As explained in Fig. 1, we can assign a di-
rection to this edges. “John” has the function to modify
the meaning of the word “has” so “John” plays the role
of modifier and the word “has” is referred as head. Most
of edges are then directed and we assume that arrows
go from the modifier to its head (other conventions may
make the opposite choice). In some cases, such as in coor-
dination, there is no clear direction [33]. But since such
cases are rather uncommon, we will assume that every
link has a definite direction, by assigning an arbitrary
direction to the undirected cases.

We define a SDN as a set of n words labeled with natu-
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rals from 1 to n. Syntactic dependencies are specified by
the adjacency matrix A = {aij}. aij = 1 if the i-th word
points to the j-th word, and auj = 0 otherwise. In fact,
aij = 1 are connected if the the i-th has pointed to the
j-th word at least once in a sentence from a corpus. The
syntactic dependency structure of a sentence can be seen
as a subset of vertices and links contained in a global net-
work (Fig. 1 B). Syntactic dependencies between words
in a sentence tend to be local and the distance between
syntactically linked words in a sentence decays exponen-
tially [34, 35]. The organization of the rest of the pa-
pers can be summarized as follows. Section II gives a
brief account of community detection techniques, with a
special emphasis on spectral methods and the way they
will be applied here. Section III describes the sources of
the data and the statistical measures that will be used to
show how the spectral methods cluster words of the same
class. Section IV presents the results. A discussion of the
findings and some conclusions are reported in section V.

II. THE COMMUNITY DETECTION

TECHNIQUE

Various techniques for detecting community structure
have been proposed recently [14, 18, 19, 20, 21, 22, 23,
24]. Some of them [19, 36] use the same arguments under-
lying the algorithm introduced by Newman and Girvan
[20] (NG–algorithm), and they focus on the value of the
edge betweenness. This quantity measures the fraction
of all shortest paths passing over a given link, or, ac-
cording to an alternative definition, the probability that
a random walk on the network runs through that link.
By removing edges with large betweenness, one splits the
whole network (step by step) into connected components.
The process goes on until the whole graph is decomposed
in communities consisting of one single node each. The
method is very efficient whenever some clues on the com-
munity structure is at hand. Otherwise, it does not give
an indication of the resolution of the clustering. There-
fore it needs extra information in input (like the expected
number of clusters). Furthermore its outcome is indepen-
dent on how sharp the partitioning of the graph is.

To overcome such problems we adopted a different ap-
proach based on the spectral analysis [14]. That ap-
proach conjugates the power of spectral analysis with the
caution needed to reveal an underlying structure when
there is no clear cut partitioning, as is in the case of the
SDN considered.

Spectral methods are based on the analysis of simple
functions of the adjacency matrix A [15, 16, 17]. In par-
ticular, the most widely investigated function of A are
the Laplacian matrix L = K − A, the Normal matrix
N = K−1A and the composition AAT , particularly use-
ful when dealing with oriented graphs. In the quantities
defined above, we have assumed that K is the diagonal
matrix with elements kii =

∑n
j=1 aij and n is the number

of nodes in the network. In most approaches concerning

undirected networks, A is assumed to be symmetric, in
contrast with the present case, which explains our em-
phasis on the matrix AAT .

Just to familiarize the reader with the concept of the
connection between spectral analysis and communities,
let us consider the simplest case among those described
above, the matrix N . Elements in a row can be inter-
preted as probabilities that a walker moves from a given
vertex to the other ones, since those elements sum up to
one. By such a probabilistic approach, it is evident that
the largest eigenvalue of the matrix N is always equal
to one. This eigenvalue is associated to a trivial con-
stant eigenvector, due to row normalization. In a network
with an apparent cluster structure, N has also a certain
number m − 1 of eigenvalues close to one, where m is
the number of well defined communities, the remaining
eigenvalues lying a gap away from one. We denote by xi

the position of the i-th vertex after sorting vertices by
the value of its corresponding component in one eigen-
vector. The eigenvectors associated to these largest m−1
eigenvalues have a characteristic structure too: the com-
ponents corresponding to nodes within the same cluster
are assigned very similar xi values so that, as long as the
partition is sufficiently sharp, the profile of each eigen-
vector, sorted by components, is step–like. The number
of steps in the profile gives again the number m of com-
munities [14]. A similar information is encoded in the
non-negative definite Laplacian matrix, where the eigen-
values close to zero are associated to clusters. While one
can easily show that these spectral properties are asso-
ciated with the clustering pattern in the Normal matrix
case, this is less evident for the other cases. Neverthe-
less, it has been shown [16] that the spectral structure
of the AAT helps in detecting sets of highly mutually
connected nodes in directed networks, thereby indicat-
ing the presence of communities in the network such as
the World Wide Web. We will use the same empirical
evidence here for the analysis of our word dataset.

As explained in [14], solving the eigenvalue problem
is equivalent to minimization of a suitable function of
the xis under a suitable constraint. The absolute mini-
mum corresponds to the trivial eigenvector, which is con-
stant. The remaining stationary points correspond to
eigenvectors where components associated to well con-
nected nodes assume similar values.

For the present aim, it is enough to mention that (as
for general real networks) the typical eigenvector profiles
in our SDN are not step-like, but rather resemble a con-
tinuous curve. Nevertheless, the method still applies. In
fact, we will see that components corresponding to nodes
belonging to the same class (or equivalently, that do not
belong to a certain class) are still strongly correlated and
take, in each eigenvector, similar values among them-
selves. Thus, a natural way to identify communities in
an automatic manner is to measure the correlation

rij =
〈xixj〉 − 〈xi〉〈xj〉

[(〈x2
i 〉 − 〈xi〉2)(〈x2

j 〉 − 〈xj〉2)]
1

2

, (1)
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where the average 〈·〉 is computed over the first few non-
trivial eigenvectors. The quantity rij measures the com-
munity closeness between the vertices i and j. Though
the performance may be improved by averaging over a
larger number of eigenvectors, with increased compu-
tational effort, we found that indeed a small number
of eigenvectors suffices to measure the correlation be-
tween two vertices, which is positively correlated with
the chance that the two networks are strongly correlated
[14].

The spectral method is used in a different manner here.
The class each node belongs to is known in advance; we
check, then, whether the spectral method clusters words
of the same class, once they are sorted by their compo-
nent in the eigenvector. Since we know that the spec-
tral method detects the community structure, clusters
are also likely to correspond to communities. With this
aim, we define S = {1, ..., i, ..., n} as a sequence of vertices
where n is the number of vertices of the syntactic depen-
dency network. We assume that S is the outcome of tak-
ing one eigenvector and sorting the vertices by the value
of the corresponding components in the eigenvector. We
define C = {c1, ..., ci, ..., cn}, a boolean vector indicating,
for every vertex in S, whether it can be of the class un-
der consideration or it cannot. More precisely, we have
ci = 1 if the i-th vertex of S can be of class i and ci = 0
otherwise. The correlations we are interested in are not
computed between values in X = {x1, ..., xi, ..., xn} as in
[14] but between values in C.

III. METHODS

For the spectral analysis, we will consider two different
matrices, i.e. A and AAT . We use AAT because it is a
way of obtaining equivalent vertices. Here equivalence
means playing the same role in the network, i.e. point-
ing approximately to the same set of nodes. With this
matrix, we are following the same approach as in [16]. A
is used for two reasons: simplicity and as null hypothesis
for AAT . The methods in [15, 17] do not use directly A
but close variations such as the Laplacian or the Normal
matrix. The main difference between the present appli-
cation of the spectral technique and the one performed
in [14] are the following. First, we use simple adjacency
matrices instead of matrices with edge weights. Second,
we do not normalize the matrices. Normalizing the ma-
trix is problematic here because most of verbs have no
outgoing link (recall the convention adopted here is that
arcs go from modifiers to heads). This would introduce
special vertices in the graph without outgoing links. This
would affect the statistics of the whole system, and this
is why we did not normalize our adjacency matrix. Be-
sides, nodes without outgoing links would mean trivial
stationary solutions for a random walk on the network.
This means that a walker moving on the graph would sys-
tematically get stuck in these “sink” vertices. Another
solution pursued in [14] is to remove vertices with no in–

going or out–going links (pruning). Nevertheless, here
pruning would mean a drastic reduction of verbs which
may preclude the analysis of that class.

We introduce now various measures of the degree of
clustering of words of a given class in C. We consider a
special case of C, Cscrambled, sharing the same composi-
tion of C but with scrambled components. The measures
obtained for Cscrambled will be used as a null–hypothesis
for those obtained for C. Significant clustering cannot
be claimed unless the clustering obtained with C and
Cscrambled differ clearly. Scrambled sequences have been
used to test the significance of long–range correlations
in DNA sequences [37]. We used the first non–trivial 98
eigenvectors, so that we have 98 C vectors for each class.

We define k as a random variable measuring the length
of a cluster of 1s in C. A cluster is a maximal se-
quence of consecutive elements equal to one in C. If
C = {0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1}, we have two
clusters of length 3 (’111’) and one cluster of length 1
(’1’). We define 〈k〉 as the mean value of k in C.

We define P (k) as the probability that a cluster has size
k. We will estimate P (k) from the proportion of clusters
of length k in C. k is expected to follow a geometric
distribution in Cscrambled. There, we have

P (k) = 〈ci〉
k
(1 − 〈ci〉), (2)

where 〈ci〉 is the mean value of the components of C. In
other words, 〈ci〉 is the proportion of ones of C. From
equation 2, it follows that

〈k〉 = 1/(1 − 〈ci〉) (3)

and the standard deviation is

σ(k) = 〈ci〉
1/2 /(1 − 〈ci〉). (4)

Since the estimated P (k) may contain a considerable
amount of noise, we will use, P≥(k), the cumulative P (k),
defined as

P≥(k) =

∞
∑

K≥k

P (K). (5)

We are also interested in measures of the correlations
between ci and ci+d, with d > 0. If the community de-
tection clusters words of the same community consecu-
tively in C [14], correlations above the expected value
in the scrambled sequence are expected. Here we will
use two measures of correlation: Γ(d) and I(d), that are,
respectively, the Pearson correlation coefficient and the
information transfer, between vertices at distance d in C
[37]. Γ(d) and I(d) are complementary measures. Γ(d)
measures positive and negative correlations, whereas I(d)
cannot distinguish positive from negative correlations.
I(d) captures non–linear correlations that Γ(d) does not
detect [38]. I(d) is apparently more sensitive to finite
sampling than Γ(d). Here, Γ(d) is defined as

Γ(d) =
COV (ci, ci+d)

σ(ci)σ(ci+d)
, (6)
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where 1 ≤ d < n, COV (ci, ci+d) is the covariance be-
tween ci and ci+d, σ(ci+d) is the standard deviation of
ci+d and σ(ci) = σ(ci+d) with d = 0. We have

〈ci+d〉 =
1

n − d

n−d
∑

i=1

ci. (7)

The covariance is defined as

COV (ci, ci+d) =

n−d
∑

i=1

(ci − 〈ci〉)(ci+d − 〈ci+d〉)

n − d
. (8)

The standard deviation is defined as

σ(ci+d) = (
〈

c2
i+d

〉

− 〈ci+d〉
2
)1/2 (9)

as usual. Given that
〈

c2
i

〉

= 〈ci〉 because C is a binary
sequence, it follows

σ(ci+d) = (〈ci+d〉 (1 − 〈ci+d〉))
1/2. (10)

Replacing equations 8 and 10 in equation 6, we obtain

Γ(d) =

n−d
∑

i=1

(ci − 〈ci〉)(ci+d − 〈ci+d〉)

(n − d)((〈ci〉 (1 − 〈ci〉)(〈ci+d〉 (1 − 〈ci+d〉))1/2
.

(11)
Here, I(d) is defined as

I(d) =
∑

x,y∈{0,1}

p(ci = x, ci+d = y) log
p(ci = x, ci+d = y)

p(ci = x)p(ci+d = y)
,

(12)
where

p(ci = x, ci+d = y) =
1

n − d

n−d
∑

i = 1
ci = x and cj = y

1, (13)

p(ci = x) =
∑

y∈{0,1}

p(ci = x, ci+d = y) (14)

and

p(ci+d = y) =
∑

x∈{0,1}

p(ci = x, ci+d = y). (15)

Now we study the Romanian syntactic dependency
network described in [25] with n = 5563 vertices. We
choose that network from the set of three networks stud-
ied in [25] because it is the most complete. The other net-
works systematically lack several syntactic dependencies.
The network is a small-world one with significantly high
clustering, has a power–law distribution of vertex degrees
and exhibits disassortative mixing. Those properties are
shared with other non-linguistic biological networks [25].
As in [25], we worked on the largest connected compo-
nent. A given word belongs to a given class if that word

Type Number Proportion
Verbs 985 0.17
Nouns 3093 0.55
Adverbs 171 0.03
Adjectives 1129 0.20
Other 337 0.06

TABLE I: Counts of the frequency of very word class. The
total amount of different words (i.e. vertices in the syntactic
dependency network) is 5563. A word counts for a certain
class if it has appeared at least once for that class in the
Romanian corpus studied in [25]. Since a word can be of
different classes, the sum of the column ’Number’ does not
necessarily equals the number of different words.

Class Cluster size A AA
T Scrambled

Verbs 〈k〉 2.01 2.08 ± 0.32 1.21 ± 0.51
max 43 24.96 ± 20.87 4.72 ± 0.84

Nouns 〈k〉 2.66 2.68 ± 0.13 2.25 ± 1.67
max 32 34.35 ± 10 13.73 ± 2.04

Adverbs 〈k〉 1.06 1.08 1.03 ± 0.18
max 2 3 2.16 ± 0.39

Adjectives 〈k〉 1.39 1.53 1.25 ± 0.56
max 10 8.14 ± 0.83 5.11 ± 0.80

TABLE II: Cluster sizes for the four classes of words, the
two types of matrices considered (A and AA

T ) and scrambled
vertex orderings. Standard errors smaller than 10−2 are not
shown.

is labeled under that class at least once in the corpus that
originated the syntactic dependency network in [25]. Ta-
ble I shows the number of words in each class according
the previous definition. Only 6% of words cannot fall
in any of the previous classes. Participles and infinitives
where excluded from the class verb, as it was done in
the original corpus. Those words represent a very small
fraction of the vertices.

IV. RESULTS

Fig. 2 shows some examples of C for nouns, adverbs
and adjectives. Large clusters can be visually identified.
Table II gives mean 〈k〉 and the maximum value of the
cluster size over the sample set of eigenvectors.

Fig. 3 shows the mean P (k) over the sample set of
eigenvectors for the two kinds of matrices and the null
hypothesis. For verbs and nouns, P (k) obeys

P (k) ∼ k−γk (16)

for sufficiently large k. The agreement with equation 16
is lower adopting A rather than AAT . Verbs and nouns
cannot be given account of by the geometric distribution
predicted by the null hypothesis, supporting thus the sig-
nificance of the results. No conclusion can be made on
adverbs, since they are not represented enough and it
seems unlikely that adjectives follow equation 16.
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FIG. 2: Visual representation of the some binary vectors C = {ci} delivered by the spectral methods for different word classes:
verbs, nouns, adverbs and adjectives. ci = 1 if the i-th vertex (or word) belongs to the class under consideration and ci = 0,
otherwise. C has 5563 components, which is the number of vertices of the SDN. C is the outcome of ordering vertices by the
the corresponding values of the eigenvectors delivered by the spectral methods and replacing the vertex by 1 if it is of the class
under consideration or by 0 otherwise. White and black indicate, respectively, ci = 1 and ci = 0. Two types of C are shown
for each word class: (A) an ordering using A and (B) ordering using AA

T .

Figure 4 and 5 show Γ(d) for A and AAT , respectively.
Fig. 6 and 7 show I(d) for A and AAT , respectively.
In order to determine the length of the correlations for
a certain correlation measure in a conservative way, we
define two series: BL(d) and BU (d). BL(d) is the mean
value of a real correlation for distance d over the sam-
ple of eigenvectors minus the corresponding standard de-
viation. BL(d) is an approximate lower bound for the
real value of the correlation. BU (d) is the mean value of
the null hypothesis series over the sample of eigenvectors
times the corresponding standard deviation. BU (d) is an
approximate upper bound for the null hypothesis. Since
real correlations tend to decrease with length (Figs. 4,
5 and 6 and 7), an approximate conservative measure of
the length of statistically significant correlations is d∗,
the smallest value of d at which BL(d) and BU (d) cross.
Long-distance correlations where found (Table III), ex-
cept for adverbs, due to the small amount of vertices that
can be adverbs (recall Table I).

V. DISCUSSION

In the previous sections we have obtained three main
results. First, the spectral methods clusters significantly

Class Correlation d
∗

A AA
T

Verbs Γ(d) 1164 915
I(d) 872 683

Nouns Γ(d) 50 63
I(d) 37 13

Adverbs Γ(d) 6 6
I(d) 1 1

Adjectives Γ(d) 148 881
I(d) 36 648

TABLE III: d
∗, the approximate length of statistically sig-

nificant correlations using two different correlation measures
measures: the Pearson correlation coefficient Γ(d) at distance
d and the information transfer at distance I(d). Four classes
of words are considered.

words of the same class. Second, those spectral methods
sort vertices in a way such that long-range correlations
appear in the binary vector of membership to a certain
class. Third, AAT clusters word classes better than A.
The chances of getting a large cluster are higher using
AAT (Fig. 3). The results presented here confirm the
power of the spectral methods introduced in [14] for de-
tecting community structure in linguistic networks. Us-
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FIG. 3: Cumulative P (k) where P (k) is the proportion of clusters of length k. Results using A (circles), AA
T (squares) and

the null hypothesis (dashed line) are shown. A clear power trend is found for the series of AA
T for verbs and nouns from the

each arrow to the right.

ing a priori information about class membership of every
vertex, we have discovered that the spectral method clus-
ters words consistently with the word types that linguists
have been distinguishing from a long time ago.

Discovering word classes minimizing the a priori

amount of linguistic knowledge is a challenge in linguis-
tics. Recently, Montemurro & Zanette [39] have clustered
words using only information about the degree of hetero-
geneity with which words are distributed throughout a
text. In particular, they have found that nouns and ad-
jectives tend to be more heterogeneously distributed than
verbs and adverbs. In a syntactic network, we have found
that verbs and nouns and significantly more heteroge-

neously distributed according to the ordering provided
by spectral methods than adverbs and adjectives. The
present work suggests that word classes could be even-
tually discovered using only the structure of syntactic
interactions.
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