
Exploration Bias of Complex Networks

Paolo De Los Rios

Institut de Physique Théorique, Université de Lausanne, CH-1015, Lausanne, Switzerland and
INFM UdR Torino Politecnico, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract. Recent research on complex networks has had a great development thanks to a great
abundance of data. Here we address the problem of whether the methods used to obtain these data
can influence the data themselves and, as a consequence, the topology of the observed networks.

Complex networks have recently emerged as the suitable tool to describe different
systems such as the Internet, the World Wide Web, food webs, protein interaction net-
works and social relationships [1]. In particular, the flurry of activity has been supported
by the availability of huge amounts of data. As a result there are many different models
appearing in the literature trying to recover some of the details of the observed networks.
Here we want to discuss the reliability of the available data, given the method used to
obtain them.

One of the most interesting features of a large class of the complex networks under
study now is their scale-free behavior [2]: each node of the network (representing Inter-
net routers, Web pages, proteins or individuals) is connected to some other k nodes. The
number of connections (the "degree" in Graph Thoery language) obeys a power-law dis-
tribution, i.e. P

�
k ��� k � γ, with 2 � γ � 3 for most networks considered. Such networks

are dubbed "scale-free" because the fluctuations of the distribution around the average
value � k � are infinite (they do not possess any particular scale). The difference be-
tween a scale-free network and a random network (where every link between different
nodes is present with a probability p, resulting in a Poisson degree distribution) hints to-
wards some mechanisms that generated the observed network features. One of the most
celebrated models that explains the emergence of scale-free networks is the Barabasi-
Albert (BA) model [3]. According to the BA model, the two essential ingredients for
the formation of scale-free networks are growth and preferential attachment. Growth
implies that new nodes are added to the network over time, at a more or less constant
rate. Preferential attachment means that a newly added node connects preferentially to
nodes that already have a high degree: a new node tries to attach to authoritative nodes,
and the degree of a node is an effective representation of its authoritativness. It has been
shown that, if the probability to connect to a site is linearly proportional to its degree,
then growth and preferential attachment indeed generate scale-free networks [4]. In tis
simplest realisation, the BA model produces networks with γ � 3, although it has been
shown that, by tinkering with the details of the attachment propbability (but still keeping
it linear with the degree), any exponent γ � 2 can actually be obtained.

Subsequent to the introduction of the BA model, many new models have been intro-
duced, mostly variations of the basic BA rules, in order to obtain the exact exponents
seen for real networks (as an example, for the Internet it has been found γ � 2 � 2 � 1 � ,
and for protein networks it has been claimed that γ � 2 � 4 � 2 � ). Clearly, shifting from
"paradigms" to detailed models implies a higher degree of confidence in the data that
one would like to explain. So, it is natural to investigate whether the exploration method
could influence what we see. We address this problem with two examples inspired by
the Internet and by Protein Interaction Networks (PIN’s).

The available Internet data are mostly obtained using a command known as "tracer-
oute": given a starting IP address, it tries to find a path connecting it to a given other
address, keeping note all other addresses it went through. By asking it to do it in a sys-
tematic way, it is possible to obtain a fairly good picture of the Internet. Yet, it introduces
some distortion in the resulting network. Indeed, loops are very likely underrepresented:
in order to detect loops, traceroute should be able to find all the possible ways to go
from an IP address to another. Because of traffic reasons, most times it finds just a small
subset of them and the resulting picture of the Internet is tree-like. Starting from these
considerations we explore a BA network (of known exponent γ 3) with a tree-building
algorithm: given a site, the algorithm explores a fraction of the nodes that are linked to
it, and so on from the newly explored links. Each node is explored just once, so that at
the end we have a tree-like representation of the BA network. Then we analyse the basic
degree distribution for this network. The results are shown in Figs.1.

In Fig.1 we show P k for a simulation where the probability of exploring a link
is p 0 1, so that only a part of the network is visited. The results give an exponent
γ 2 1 1 , clearly different from the original γ 3 of the BA model. If the expolarion
is done following 100% of the available links (but always with the provision that
already discovered sites are never re-discovered, thus avoiding loops). Although the
exponent γ 2 7 1 is closer to 3, it is still distinguishable from it. Anyway, from
this experiment we can conclude that a loopless exploration, inspired by the tracerout
command, can indeed change the percieved features of the underlying network, at least



to a certain degree (we verified that scale-free networks stay scale-free, and exponential
networks exponential). This result leads us to wonder what is the reliability of present
network data, at least for the case where they are obtained via tree-like explorations, and,
consequently, to what degree we should try to reproduce the detailed data if we are not
still sure of their values.

As a second example, we look at networks where links are discovered one by one,
somehow picking them in an uncorrelated way. This is the case of large-scale PIN’s,
where, in a systematic fashion, interactions between proteins (links and nodes of the
networks, respectively) are discovered [5]. There are two main methods, presently, to
detect a protein-protein interaction: two-hybrid assays and mass spectrometry. In mass
spectrometry protein pairs are separated and then identified according to their mass,
through a series of procedures such as immunoprecipitation, elution and centrifugation;
the two-hybrid assay method is less "physical". Rather it is based on the ability to
manipulate genes: first, a transcription factor (a protein that allows the expression of
a specific gene) is broken in two parts. The two parts are then glued to the two proteins
whose interaction is under investigation. If the two proteins do not interact, the two
parts of the transcription factor do not come close together, and the corresponding
gene is not expressed; otherwise, if the two proteins interact, the transcription factor
is reconstituted and the expression of the gene can be observed, revealing the protein
interaction. PIN’s obtained either way show again fat-tail behavior, clearly different
from random networks, and it has been claimed that actually they also are scale free
with exponents γ � 2 � 3 � 2 � .

Looking carefully at the methods used to detect interactions, in both cases a large
binding constant is needed between the two proteins: for mass spectrometry in order
to resist the various processes of separations, in two-hybrid assays so that the two
transcription factor fragments stay together long enough to allow gene expression. The
strength of a protein-protein interaction is given, at least partially, by their solubility
degree: two unsoluble proteins stick to each other much more easily than two soluble
ones. Solubility can be measured as a free energy gain ∆ f to be dissolved (∆ f � 0
for unsoluble proteins), and the free energy of interaction between proteins i and j is
therefore ∆ fi j � ∆ fi � ∆ f j. Asking for a large enough binding constant is tantamount to
asking that ∆ fi j � ∆ fc.

Now, let us assume that the "true" PIN is a random network of N proteins, where every
possible protein pair is linked with probability p (p in general quite small, the smaller
the larger the network: it accounts for specificity of interactions). Yet, we can detect
only those interactions for which ∆ fi j � ∆ fc: if we assume that the solubilities ∆ f ’s
are randomly distributed over the nodes, according, say, to an exponential distribution,
p
�
∆ f � � exp

���
∆ f � , we have that the typical number of links of a node of free energy

∆ f is

k
�
∆ f � � pN

� ∞

∆ fc � ∆ f
e � ydy � pNe � ∆ fc � ∆ f (1)

that provides us with an expression for P
�
k � by P

�
k � dk � P

�
∆ f � d � ∆ f � , which results in

P
�
k ��� 1

k2 (2)
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FIGURE 1. Tree-like exploration of a BA network (circles, exponent γ � 3), where 10% of the links
starting from every node are explored (squares, exponent γ � 2 � 1 �

1 � ).

The result of a simulation is shown in Fig.2 [6].
We see therefore that, although the underlying network was a simple random Poisson

one, the observed one shows striking scale-free features, that are a clear artifact of the
exploration method (although of course it says something of the physics behind the
network).

In conclusion we have analysed the effects of the exploration method on the tolopgy
of the network: indeed we have found that different methods can distort the topological
properties of the network, and introduce "systematic" errors in the statistics. The extent
to which this actually occurs in reality could be uncovered only by exploring the same
networks with different methods, and then comparing them.
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FIGURE 2. Degree distribution for a network of 10000 nodes, with p � 0 � 1, and ∆ fc � 10, average
over 1000 realizations. The straight line is k �

2.


