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Abstract

The recent availability of high-throughput gene expression and proteomics techniques has

created an unprecedented opportunity for a comprehensive study of the structure and dynamics

of many biological networks. Global proteomic interaction data, in particular, are synthetically

represented as undirected networks exhibiting features far from the random paradigm which has

dominated past effort in network theory. This evidence, along with the advances in the theory of

complex networks, has triggered an intense research activity aimed at exploiting the

evolutionary and biological significance of the resulting network’s topology. Here we present

a review of the results obtained in the characterization and modeling of the yeast Saccharomyces

Cerevisiae protein interaction networks obtained with different experimental techniques. We

provide a comparative assessment of the topological properties and discuss possible biases in

interaction networks obtained with different techniques. We report on dynamical models based

on duplication mechanisms that cast the protein interaction networks in the family of

dynamically growing complex networks. Finally, we discuss various results and analysis

correlating the networks’ topology with the biological function of proteins.
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1. Introduction

Complex biological functions in living organisms rarely depend on single
components and the possibility of gathering data on the global genomic and
proteomic scale has created an unprecedented opportunity to develop comprehensive
explanations for biological phenomena. In particular, one of the most important
aspects of biological complexity is encapsulated in the structure and dynamics of the
many networks emerging at different organizational levels, ranging from intracel-
lular biochemical pathways to ecological interactions [1–6]. While the data sets
available to us are often incomplete, yet they suffice for analysis, model development
and prediction through model simulations. In addition, the last years have witnessed
the developing of a large body of work on the statistical characterization and theory
of evolving complex networks, activating an entire research field concerned with the
analysis of complex biological networks, in particular focusing on their structure and
topology [7–10].
A prominent example in this area is provided by the protein interaction network

(PIN) of various organisms which can be mathematically represented as graphs
whose nodes symbolize proteins and edges connect pairs of interacting proteins.
Global PINs have been collected in particular for the Saccharomyces cerevisiae a
yeast of the class Hemiascomycetes [11–14], but extensive data are being gathered on
higher organisms such as Drosophila melanogaster [15]. Noticeably, all interaction
data sets exhibit a non-trivial topological structure of the networks, showing a broad
connectivity distribution PðkÞ; i.e., the probability that any given protein interacts
with k other proteins. This feature implies the statistical abundance of ‘‘hubs’’, that
is nodes with a large connectivity, and prompt to a complex architecture that has
found further support in the non-trivial correlation and hierarchical features
observed in the networks topology [16–18]. Interestingly, these properties are shared
by many biological networks that appear to have recurrent architectural principles
that might point to common organizational mechanisms [9,10,19]. The resulting
networks topology is clearly interwoven with the biological significance of the
network’s topology and analysis in this direction have indeed pointed out correlation
signatures between gene knock-out lethality and the connectivity of the encoded
protein [20], negative correlation between the evolution rate of a protein and its
connectivity [21,22], and functional constraints in protein complexes [23]. At the
same time, topological information is being exploited in predictive methods for
protein functional assignment and theoretical models are being developed for the
formation of PINs. Despite a careful scrutiny of the possible biases in interaction
networks obtained with different techniques is needed [24–26], the results obtained
so far on protein interaction networks might open new paths in our understanding of
the biological complexity at the ‘‘omic’’ level.
Our aim, here, is to provide an overview of the main results obtained in this area,

by privileging the perspective emerged with the use of statistical physics methods and
the theory of evolving networks. We start by reviewing the most important
experimental techniques used to gather data on protein interactions and the pros and
cons as well as the biases intrinsically present in each of them. In the following we
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focus on the analysis of the S. cerevisiae PIN, presenting a discussion of the
topological properties of graphs obtained from different data sets. We then report on
works concerning the development of biological evolutionary models that reproduce
the structure we observe in PINs. This corresponds to the solution of an ‘‘inverse’’
problem: i.e., given the topology of the network what is the dynamical evolution that
gives raise to the observed architectures? This is a fascinating issue since the
development of successful models amounts to the understanding of the evolutionary
process that has generated the biological life. Finally, we will discuss the approaches
developed to facilitate the functional annotation of proteins for which we have few
or no functional information at all. In particular we will describe the basic strategy at
the basis of global optimization methods that takes into account the whole set of
interactions of each uncharacterized protein taking advantage of the information
encoded in the connectivity pattern of the whole PIN.
2. Methods

The recent availability of complete genome sequences has pushed forward
consistently the development of new high-throughput techniques aimed at detecting
protein–protein interactions on a proteome-wide scale. In this section we describe the
current state of interaction–detection methods along with a discussion of their
positive and negative features. In particular we report on experimental techniques
designed to identify physical bindings between proteins (such as yeast two-hybrid
systems [11,12] and mass spectrometry analysis of purified complexes of proteins
[13,14]), interaction prediction methods whose purpose is to detect functional
associations between proteins [27,28], correlated mRNA expression profiles [29,30],
genetic interaction–detection [31,32] and in silico approaches (such as gene fusion
[33,34], gene neighborhood [35,27] and phylogenetic profiles [36,37]).

2.1. The two-hybrid technique

The two-hybrid technique allows the detection pair-wise protein interactions. It
exploits the modular property typical of many eukaryotic transcription factors,
which can be usually decomposed in two distinct modules, one directly binding to
DNA (DB, DNA-binding domain) and the other activating transcription (AD,
transcriptional activating domain) (Fig. 1). The first component, DB, is able to bind
to DNA even by itself, while the second module, AD, will activate transcription only
if physically associated to a binding domain. This property is the result of a series of
analysis made in the 1980’s by Ma and Ptashne [38] on transcription factors, while its
use for the detection of protein interactions was first proposed in Ref. [39].
As it is illustrated in Fig. 1, in the two-hybrid experiment the test proteins are

expressed as fusion proteins (hybrids) with a DNA-binding domain (DB, the bait)
and a transcriptional activating domain (AD, the prey). Fusions partners are co-
expressed in yeast nucleus where a protein–protein interaction is identified thanks to
the activation of the reporter gene, which can be detected and measured.
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Fig. 1. The two proteins whose interaction is under scrutiny, here indicated as bait and prey, are expressed

as fusion proteins, respectively, with a binding domain (BD) and an activation domain (AD). If an

interaction between bait and prey takes place, the complex formed activates the transcription of the

reporter gene, allowing, as a consequence, the detection of the interaction itself.

V. Colizza et al. / Physica A 352 (2005) 1–274
The two-hybrid system is able to identify virtually every protein–protein
interaction. It is an ex vivo technique that is relatively simple, rapid, and
inexpensive, because of the minimal requirements of a two-hybrid screen respect
to, e.g., high quantities of purified proteins needed in traditional biochemical
approaches. Indeed, it does not require any previous knowledge of the proteins to be
tested and can be performed once the corresponding genes are known, thus being
suitable for large-scale applications. On the other hand, it only detects binary
interactions and does not identify cooperative binding. In addition, some kinds of
proteins, such as transcription factors, cannot be studied with this technique since
their hybrids could activate the transcription even in absence of any interaction.
Furthermore, the extensive use of artificially made hybrids could result in potential
drawbacks, by leading to conformational changes in the bait and prey proteins thus
preventing transcriptional activation. This is one of the possible causes of false
negative interactions, i.e., a true protein–protein interaction which is not detected by
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two-hybrid assays. Also, this experimental technique may produce false positives.
Indeed, even if two proteins potentially interact into the nucleus, where this
techniques takes place, it could happen that they never find close to each other
because they could be localized in different cell types or could be expressed in
different times of the cell cycle. For this reasons, interactions detected by two-hybrid
assays must be critically analyzed in order to assess their biological relevance.

2.2. Protein complex analysis

After the development of ultra-sensitive mass spectrometric techniques for protein
identification, new experimental procedures, besides two-hybrid screens, have been
used to produce large-scale results for protein–protein interactions, such as
purification of protein complexes. This procedure is made up of three main steps:
isolation of the bait or target protein, affinity purification of the complex and
identification by mass spectrometry of proteins belonging to the complex. The
protein of interest is isolated and fused to an affinity tag, by using one of the two
protocols: tandem affinity purification (TAP) [13,40] or high-throughput mass-
spectrometric protein complex identification (HMS-PCI) [14]. TAP consists of two
successive affinity purifications, using two tags fused with the bait and leading to the
isolation of the target protein together with its associated proteins. Unfortunately,
comparison of results obtained through complex purification with yeast two-hybrid
data shows a very small overlap [13]. A possible explanation could rely on the fact
that cooperative binding embodied by complexes is not only the result of a sum of
pair-wise interactions. Indeed, the main difference between complex purification
methods and two-hybrid system relies in the identification of whole complexes
isolated in a single step, thus detecting cooperative interactions between proteins
which cannot result from two-hybrid screens, where the strategy adopted is based on
the bi-modular properties of transcription factors. Moreover, it is an in vivo
technique which employs only one artificially made protein (the bait), instead of two
as in two-hybrid procedure, thus minimizing possible changes in conformational
properties which could lead to steric interference. Complexes are found in
physiological settings, since interactions take place in native environment. In order
to test the validity of a complex identification, several components of the same
complex can be used as tagged baits.

2.3. Interaction detection methods

Besides the physical interactions detected by the high-throughput experimental
techniques described above, a complementary insight about protein–protein
interactions is given by interaction prediction methods based on genomic
information. From the analysis of genome sequences, these methods are able to
identify functional associations between proteins (for a review, see Ref. [41]).

Phylogenetic profiles. This approach is based on the simultaneous presence or
absence of two proteins in the genomes of different organisms. Functionally
interacting proteins indeed tend to have similar phylogenetic profiles [36,37,42].



ARTICLE IN PRESS

V. Colizza et al. / Physica A 352 (2005) 1–276
However, it requires complete sequencing of entire genomes, in order to test the
presence or absence of the genes, and is not suitable for essential genes.

Gene fusion. It predicts an interaction between two proteins of a given organism
which seem unrelated if they are part of the same polypeptide chain in another
organism [33,34].

Gene neighborhood. The conservation of gene neighborhood in the genomes of
different organisms is interpreted as an indication of functional association between
the proteins encoded by the two genes [27,35]. Indeed, functionally related proteins
are often encoded in clusters and this relation is even strengthen by the conservation
of such adjacency in different species [43]. However, this happens only in prokaryotic
genomes, representing one of the main drawbacks of this approach.

Correlated mRNA expression. This approach predict functional associations
between proteins encoded by genes which show similar transcriptional responses to a
change in the cellular status [29,30]. Messenger RNA expression profiles can be
measured under very different cellular conditions, thus representing an advantage
respect to other techniques which can only take into account few settings.

Genetic interaction– detection. Functionally interacting proteins can be detected by
synthetic genetic interactions [31,32]. Two non-essential genes show a synthetic lethal
interaction if they cause cell death when simultaneously mutated [44,45].

2.4. Data sets comparison and completeness

Several databases have been recently compiled in order to collect and document
the vast amount of large-scale data on protein interactions produced in the last few
years by high-throughput methods (for a review, see e.g., Ref. [46]). The final aim is a
comprehensive characterization of the whole network of connections between
proteins resulting by the union of the information gathered in different experiments.
On the other hand, data sets comparison and merging must take into account the
different conditions under which interactions are detected. Indeed, the intersection
between different interaction data shows a surprisingly small overlap [47], under-
lining the need for a critical evaluation of the biological relevance of large-scale data
sets.
The many discrepancies arising from data sets comparison could be due primarily

to specific features of experimental methods, each characterized by its own
advantages and drawbacks. Results from one method may not largely overlap with
those obtained with another technique because of specific restriction and different
requirements. In this sense, different experimental techniques could be complemen-
tary, thus increasing our knowledge about the network. Secondly, these observations
could be the result of low coverage of data sets; i.e., a still partial and incomplete
knowledge of the interactions network. Finally, it is also known that results
produced by high-throughput techniques, although extensive, may contain spurious
interactions (false positives) as well as miss many true interactions (false negatives).
The sum of this various factors leads to high uncertainties on data reliability. For
instance, even referring to the same experimental technique, yeast two-hybrid assay,
one can notice the incredibly small overlap among different data sets [48]; e.g. Ito’s
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data and Uetz’s data share only a very small percentage of interactions, the
intersection of the two sets representing, respectively, about 4% and 14% of the total
ensembles.
The assessment of the reliability of such data needs a comparison with a trusted

reference set, in order to distinguish between validated interactions and background
noise. Interactions detected by small-scale experiments could act as a benchmark,
since they usually have been thoroughly investigated by multiple experiments and
several checks. However, small-scale data sets are not suitable to validate the
majority of high-throughput data, because of the very limited number of high-
confidence interactions they contain. The same problem is encountered when
considering the intersection of different large-scale data sets of protein interactions.
Indeed, it has been shown that connections detected by more than one method
increase their accuracy with respect to others, while however decreasing their
coverage [24], resulting in a very small reference set. For these reasons, the problem
of investigating biological relevance and accuracy of protein interactions still
represents a crucial step in analyzing protein–protein interaction data.
3. Topological characterization of protein interaction networks

Protein–protein interaction data find an appropriate mathematical representation
as undirected graphs whose nodes represent proteins and edges the presence of a
direct interaction among them. The statistical analysis of the topology of the
resulting graph is therefore a starting point for expressing in concise mathematical
terms the hidden regularities and hierarchies of PINs. On their turn, the
identification of these features provides information about the organizational
principle at the basis of the complicate structure of these graphs, a key point in the
connection between the fabric and the biological evolution and function of protein
networks.
In view of the discussion concerning the possible biases induced by different

experimental techniques, in the following we review the topological properties of
three distinct PINs of the yeast S. cerevisiae obtained from different data sets:

Network (I): a collection of binary interactions detected by two different two-
hybrid assays [11,12], composed of a total of 2831 links among 2152 proteins;

Network (II): interactions obtained from protein complex detection with TAP
techniques [13]; it consists of 3221 interactions involving 1361 proteins;

Network (III): a mixed collection of interactions obtained with different
experimental techniques, documented at the Database of Interacting Proteins
(DIP) [49]; it is composed of 4713 proteins and 14846 interactions. The content of
this database is continuously increasing; the number we give here refers at the time
we first analyze the data.
It is worth noticing that, while (I) is composed of binary interactions between

proteins directly detected by two-hybrid techniques, network (II) assigns hypothe-
tical connections between proteins belonging to the same complex. Indeed, the
topology inside a protein complex is not revealed by purification processes: not all
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associated proteins will in general interact with the bait, since the interaction could
be mediated by other molecules, or interact with the bait at the same time, since
interactions could occur under different physiological conditions. Therefore, for a
direct comparison with pairwise interactions detected by other experiments, protein
complex data have been assigned hypothetical interactions following two different
models [47]: the spoke model, in which only interactions between the bait and
associated proteins occur, and the matrix model, which assigns to a given all possible
interactions between the proteins belonging to a complex, thus leading to cliques
(i.e., fully connected sub-networks). In network (II) we have adopted the spoke
model, since it displays a higher accuracy when compared to a reference set [24].
We start by reviewing the properties of the three representative graphs with the

analysis of the most basic set of standard metrics. In Table 1 we report the size and
the number of interactions of each network, together with the size of the largest
(sometime referred to as ‘‘giant’’) component, i.e., the largest connected sub-graph.
A first important feature of the graph is highlighted by the average degree, where the
degree of a given node is defined as the number of its connections. The average
degree is therefore simply hki ¼ 2l=n with l being the total number of links (edges) in
the graph and the factor 2 takes into account that each link contributes to the degree
of two nodes. The small values of the average degree hki; compared to network sizes,
states that PINs are sparse graphs. The values observed, however, differ considerably
in the three graphs considered, yielding indication that different sampling of the
original network are achieved in each data sets.
A more detailed inspection of the graph local cohesiveness is provided by the

clustering coefficient. The clustering coefficient measures the local group cohesive-
ness and is defined for any vertex i as the fraction of connected neighbors of i [50].
Considering a protein i, its clustering Ci is therefore defined as

Ci ¼
2ei

kiðki � 1Þ
, (1)

where ei is the number of links connecting neighbors of i and kiðki � 1Þ=2 is the total
number of possible connections among neighbors (for peripheral proteins having
ki ¼ 1; Ci is taken equal to zero). A more global quantity for characterizing the
graph is the mean clustering coefficient hCi ¼ 1

n

P
i Ci; where the average is over all

the n proteins in the network. This quantity expresses the statistical level of local
Table 1

Average global properties of networks (I), (II) and (III)

(I) (II) (III)

# proteins 2152 1361 4713

# proteins giant component 1679 (78%) 1246 (91%) 4626 (98%)

# links 2831 3221 14846

hki 2.63 4.73 6.30

hCi 0.10 0.22 0.09

hCrand i 0.0064 0.019 0.018
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cohesiveness of the graph and it is interesting to compare the empirical measured
values with those obtained for random graphs with the same connectivity properties.
We compare hCi computed on each network with the corresponding average
clustering coefficient of a random network with the same degree distribution [51]. In
the case of random graphs the clustering coefficient can be expressed in terms of the
first and second moment of the distribution [51]:

hCrandi ¼
1

n

ðhk2
i � hkiÞ2

hki3
(2)

obtaining the expected values for random graphs with the same properties of the
considered data sets. In Table 1 we report the values obtained empirically, and in all
cases the measured clustering coefficient is from five to fifteen times larger than the
corresponding random one. It is also worth noticing that different levels of
cohesiveness exist in the three data sets. While network (II) has the largest clustering
coefficient, the larger ratio hCi=hCrandi is obtained for network (I), indicating, for his
data set, the most noticeable departure from the random case. Such a large
cohesiveness is a first signature that protein interaction networks do not fit the
standard random graph picture, prompting to the presence of organizational
principle shaping their structure.
Further differences from the random paradigm emerge by inspecting the

distribution of protein degrees, PðkÞ (Fig. 2), which represents the probability that
a randomly chosen protein has a given degree k. Indeed, the observed degree
distributions provide a clear mark for a high level of heterogeneity in the
connectivity properties. In all data sets the degree distribution is heavy-tailed with
a non-negligible probability of having proteins with degree larger than hki:
In particular, following Jeong et al. [20], we fit the observed degree distribution to

a power-law with exponential cut off

PðkÞ ’ ðk þ k0Þ
�ge�k=kc . (3)

Degree distributions of (I) and (III) are in good agreement with such functional
form—a best fit of real data yields power-law exponents gðIÞ ’ 2:5 and gðIIIÞ ’ 2:5
(slopes of solid lines in Fig. 2, top and bottom), in good agreement with results of
Jeong et al. [20] concerning protein interaction data extracted from Ref. [11], and cut
offs kðIÞ

c ’ 30 and kðIIIÞ
c ’ 100: Interaction data derived from TAP experiments

display a degree distribution which seems to deviate from the behavior observed in
(I) and (III), showing the presence of a ‘‘bump’’ in the distribution for intermediate
values of the degree. The solid line in Fig. 2 (center) has a slope gðIIÞ ’ 2:1;
representing the best fit to the data, using Eq. (3). The high level of heterogeneity
embodied by the degree distribution of PINs can be considered as evidence for the
absence of a typical scale for the system. In other words, the average degree value hki
is not anymore a typical value as in classical random graphs [52,53]. Indeed, the
degree fluctuations hk2

i are much larger than the average value, prompting for the
presence of overwhelming statistical fluctuations that render the system an example
of scale-free behavior. It is also worth noticing that the presence of the exponential
truncation of the power-law behavior should not be considered in contradiction with
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the previous statement. Actually the heavy-tail truncation is the natural effect of the
upper limit of the distribution that must necessarily be present in every real-world
system.
Along with the vertices hierarchy imposed by the degree distribution, the studied

graphs show an architecture imposed by the structural and functional constraints
acting on the PINs. In order to uncover this architecture some topological quantities
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are customarily studied. A first signature of a hierarchical organization of the
network structure can be characterized quantitatively by the clustering coefficient
spectrum. This quantity is obtained by averaging the clustering coefficient over
vertices with degree k

CðkÞ ¼
1

nk

X

i

Cidki ;k , (4)

where nk is the number of proteins with degree k. A non-trivial behavior of CðkÞ

provides some hints on the presence of a hierarchy of nodes in the network. In
particular, a decaying function CðkÞ signals a hierarchy in which low-degree proteins
belong generally to well interconnected communities (high clustering
coefficient) while hubs connect many proteins that are not directly interacting
(small clustering coefficient) [17,54–60]. It is natural that the presence of a hierarchy
of interconnected proteins group might provide hints on the functional modularity
present in the PIN. In Fig. 3 (left) we report results for the clustering spectrum CðkÞ

in the different data sets. Network (II) exhibits a clear heavy-tail which can be fitted
to a power-law, 	 k�0:48; while networks (I) and (III) do not display a scale-free
behavior. Two-hybrid data seem to remain almost constant for small degrees,
exhibiting a drop for larger values of k, possibly due to small network size and poor
statistics. Finally, the behavior displayed by CðkÞ for the DIP data set suggests the
presence of a structural organization varying continuously over two orders of
magnitudes, although do not show a clear functional form for the spectrum CðkÞ:
Results observed provide a strong and clear evidence for an inherent hierarchical
organization only for network (II), but suggest the presence of a structural
organization for the other networks, although characterized by weak and non-
univocal signatures.
Another important source of information about the network structural organiza-

tion lies in the correlations of the connectivities of neighboring proteins. Correlations
can be probed by inspecting the average degree of nearest neighbor of a vertex i

knn;i ¼
1

ki

X

j2nnðiÞ

kj , (5)

where the sum runs on the nearest-neighbors vertices of each vertex i. From this
quantity a convenient measure to investigate the behavior of the degree correlation
function is obtained by the average degree of the nearest-neighbors spectrum, knnðkÞ;
for vertices of degree k [54,61]

knnðkÞ ¼
1

Nk

X

ijki¼k

knn;i . (6)

This last quantity is related to the correlations between the degree of connected
vertices since it can be expressed as

knnðkÞ ¼
X

k0

k0Pðk0
jkÞ , (7)
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where Pðk0
jkÞ is the conditional probability that any given edge of a protein with

degrees k is pointing to a protein with degree k0 [18]. If degrees of neighboring
vertices are uncorrelated, Pðk0

jkÞ is only a function of k0 and thus knnðkÞ is a
constant. When correlations are present, two main classes of possible correlations



ARTICLE IN PRESS

V. Colizza et al. / Physica A 352 (2005) 1–27 13
have been identified: assortative behavior if knnðkÞ increases with k, which
indicates that large degree vertices are preferentially connected with other large
degree vertices, and disassortative if knnðkÞ decreases with k [62]. In Fig. 3 (right)
we plot knnðkÞ as a function of protein degree. Evidence of degree correlations
are observed only in (III), which exhibits a disassortative behavior with
power-law decay with exponent ’ 0:24; whereas (I) and (II) display knnðkÞ almost
independent of k, thus displaying a lack of correlations. It is worth mentioning that
other data sets analysis [18] provide further evidence for disassortative behavior,
confirming the presence of non-trivial correlations in the protein interaction
connectivity pattern.
While the data sets analysis provides quantitative and even qualitatively different

results, it generates convincing evidence that the topology of PINs is departing from
the random paradigm entailed by random graph models. Correlations and clustering
coefficient prompt to specific organizational principle far beyond the random
connectivity pattern. Furthermore, the presence of heavy-tailed distributions
represents the potential signature of an emergent behavior leading the network
evolution. In other words, the study of the dynamics of the network evolution might
shed light on the large-scale structure in which it is organized. These considerations
will be basic inputs for the development of evolutionary models as well as relating
function and structure in large PINs.
4. Modeling the evolution of the protein interaction network

A satisfactory picture of the basic topological features of PINs described in the
previous section cannot be parted by the study of their evolution. Life, and protein
networks as a consequence, have not always been as they appear today. It is not
unreasonable to think that PINs were originally simpler structures, composed of
fewer proteins and possessing a less complex pattern of interactions. In the present
section we will show how possibly incorporate in simple networks models the
evolutionary forces that have shaped the topology one sees today.
When it was first realized that Yeast’s PIN exhibits an algebraic degree

distribution and that, therefore, the Random Graph model was unapt to
describe it, it did not come completely as a surprise [63]. Several authors had
earlier shown that many real networks, noticeably the Internet and WWW, but also
others, emerging from the social and the biological sciences, have, to a certain
extent, similar properties. The generalized failing of the random graph
paradigm became then a loud call for an organizing principle. It had to be of
dynamical nature, since all these networks have grown in time by addition of new
nodes and links, unsupervised, because of the lack of a ‘‘central authority’’ governing
the growth, and, at the same time general enough to embrace the great variety of
cases at hand. This void has been somewhat filled by the Barabasi–Albert (BA)
model [19], that soon became the paradigm for scale-free networks. Capitalizing on
ideas put forward in unsuspected times by Simon [64] and Price [65], Barabasi and
Albert proposed a class of growth models for networks based on the principle of
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preferential attachment. In practice, a set of N � m0 nodes is sequentially added to
an initial core of m0: When a new node enters the network, carrying along
m new edges, it attaches them to m pre-existing nodes, each one chosen
randomly with a probability proportional to its degree. This amounts to assume
the probability PBAðkiÞ ¼ ki=

P
i ki that any given vertex is chosen for the

attachment process by the new incoming vertex. The iteration of this simple
growth rule leads to networks that asymptotically exhibit a power-law decays as k�3;
whose behavior can also computed exactly via a master-equation approach
[19,66–68]. Given its simplicity and generality, several generalizations of the model
have been developed [68–75] in order to introduce more realistic mechanisms
actually occurring in real processes and to extend variability of the power-law
exponent. Indeed, the idea of preferential attachment is sound and, infact, general
enough to potentially lend its applicability to citation networks, the Internet and the
WWW, just to mention few examples. In particular, empirical measurements of
degree increase in various experimental data on growing networks support the linear
preferential attachment as a realistic approximation of the actual growth
dynamics[61,76,77].
While very general, the BA model lacks any biological justification to be

claimed as a model for PINs. Furthermore, it cannot reproduce several topological
features of PIN beyond the degree distribution. For instance, Samanta and
Liang have shown that there is an incredible large number of couple of proteins
that share a relevant number of common neighbors, orders of magnitude more
than a corresponding, properly fitted, BA or random network. On the other hand,
the Barabasi and Albert model is not intended to be a realistic model of any
real-world network. Rather it is a zeroth-order conceptual model which can
be used as the starting point for models taking into account the various
particular processes ruling the dynamics of the network under consideration. In
the case of PINs a possible dynamics at the base of the network evolution is
found in the classic work of Ohno [78] on the genes duplication and divergence
process. It is known that organisms may occasionally pass two copies of one or more
genes to their offspring, rarely the entire genome, even though it is known that at
least one of such events took place in the history of yeast [79]. The blueprint and the
duplicated gene, now distinct, may subsequently follow different evolutionary
fate, undergoing to mutations. If the mutation proves to be beneficial the offspring
will preserve both genes, now slightly changed. This translates, at the proteome level,
in the two genes producing slightly different proteins that will therefore develop a
corresponding slightly different pattern of interactions and functionality. On the
basis of the duplication divergence mechanism, two simple models of proteome
evolution were first developed by Vazquez et al. [80] and by Solé et al. [81] to
reproduce topological and large-scaling properties of protein–protein interaction
networks and then further developed in Refs. [82,83]. Interestingly enough these
models depart consistently from the preferential attachment mechanism. However,
as we shall see in the following, they do contain this mechanism as an emergent
property and thus providing a basic understanding of its very microscopic origin in
the PIN.
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Both Vazquez et al. and Solé et al. models are based on the microscopic processes
of duplication and complementary degenerative mutations. In Ref. [80] the
algorithm for proteome evolution consists of the following rules:


Fi

Bo
Duplication: a protein i in the network is randomly chosen and duplicated, i.e., a
new protein i0 is created with links to each neighbor j of the protein i; an
interaction between i and i0 is created with probability p.

 Divergence: each neighbor j is considered; one of its two connections, with i or
with i0; is chosen and removed with probability q.

The model by Solé et al. [81] takes also into account divergence due to addition of
new connections in the network (Fig. 4). The main stream view is that, while the
original protein retains its original function (and consequently its pattern of
interactions), the duplicated one develops a new, independent and original
interaction pattern and function. Recently, however, evidences have been provided
[84,85] that, infact, both the duplicated and the parental genes undergo mutations
and subfunctionalize: the role played originally by the parental protein is shared
between, and possibly optimized by, the two genes together. Both models cited
above, in a different measure, spouse this more recent point of view. The process of
mutation by addition of new links, anyway, was found to have a probability much
smaller than divergence due to deletion [63]. Vazquez et al. have tested the
introduction of such mechanism in their model, without obtaining changes in the
topological properties. Anyway, in order to have a finite average connectivity in Solé
et al. model, the rate of addition of new links a must be inversely proportional to the
network size, in agreement with the rates observed in Ref. [63]. While each model
uses a slightly different implementation of the basic rules, it is straightforward to see
that the biologically motivated local rules actually produce an effective preferential
g. 4. Duplication–divergence model. Top: a node is duplicated (blank circle, indicated by the arrow).

ttom: some of the original or duplicate edges are removed with probability q.
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attachment. Indeed, the probability that a node of the network with degree k gains
one more link is given by the probability that one of its neighbors is duplicated (k=N)
times the probability of its new link not to be removed (1� q). We therefore obtain
that, ignoring self-interactions and correlations, each protein has an effective
probability of getting new edges given by

PðkÞ 	 ð1� qÞk=N , (8)

readily disclosing the presence of an emergent preferential attachment in the network
dynamics. Indeed, it is interesting to mention that similar copy mechanisms have
been implemented also in other domains such as the modeling of the WWW network
[86–88], providing a microscopic description of their growth dynamics and the origin
of the preferential attachment principle.
PIN models can be analytically studied using a mean-field approximation. Here

we follow Ref. [80], since the two approaches lead to analogous results in terms of
the respective parameters introduced. The average degree hkiNþ1 of the network with
N þ 1 nodes can be expressed as

hkiNþ1 ¼
NhkiN þ 2p þ ð1� 2qÞhkiN

N þ 1
, (9)

where 2p represents the gain in average degree due to self-interacting link and
�2qhkNi the loss corresponding to removed connections for divergence process. In
the continuum limit for large N, one obtains a differential equation whose solution
shows two distinct behaviors, depending on the rate q. For q41=2; a finite average
connectivity is reached, i.e., hki ¼ k1 ¼ 2p=ð2q � 1Þ; while for qo1=2; hki diverges
with N as N1�2q: At q ¼ q1 ¼ 1=2 a phase transition occurs. Networks obtained
display multifractal connectivity properties, with a scale-free behavior characterized
by an infinite set of scaling exponents, a features that seems to be related to local
inheritance mechanisms [89].
Other relevant quantities have been investigated in Ref. [80], such as the

clustering coefficient which displays the correct behavior, reaching a finite
value for increasing network size. Once the values of the two rates p and q are set
to have clustering coefficient and square coefficient values consistent with
those of the protein–protein interaction network of the yeast S. cerevisiae, the
model is able to reproduce other quantities, such as average degree and
degree distribution together with tolerance against random and selective deletion
of nodes, which are in good agreement with experimental results (Fig. 5). In
Ref. [81], approximate values of the rates d and b are found by imposing the
experimental value of the average degree of the yeast, together with estimations of
the ratio a=d from Ref. [63]. The degree distribution PðkÞ obtained for networks of
size comparable to yeast PINs (Fig. 6) can be fitted by a power-law with an
exponential cut off, Eq. (3), already used by Jeong et al. [20] to analyze the
connectivity distribution of S. cerevisiae. The fit parameters, g ¼ 2:5� 0:1 and kc ’

28 are in good agreement with those found in Ref. [20]. Other quantities, such as
clustering coefficient, average path length and size of the giant component, were
quite well reproduced by the model.
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Finally, it is worth noticing that it is easy to imagine how the duplication and
divergence mechanisms produces a relevant number of proteins that, when compared
to a RG or a graph obtained by preferential attachment only, share a large number
of common partners, as observed by Samantha and Liang [90]. We will return on the
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relevance of this fact when correlation topology–function and methods for function
prediction will be discussed in the next section.
5. Proteins functional characterization

With the advent of high-throughput methods, the traditional view of protein
function as a task performed by a single protein independently from the others has
been substituted by a more general context [91,92], in which interactions between
proteins play crucial roles when performing their activities and several cellular
processes are the outcome of complex interactions between proteins. The underlying
network of interactions thus assumes a deeper meaning in terms of functional
relationships between proteins, representing cooperative participation in performing
functional tasks.

5.1. Topology/functionality correlations

In the work by von Mering et al. [24] about the quality of different protein
interaction data sets in terms of accuracy and coverage, it was shown that in highly
accurate data sets functionally related proteins are more likely linked to each other.
This feature is usually exploited in function prediction models (see Section 5.2) to
infer functional annotation of unclassified proteins from classified neighbors. The
authors computed the distribution of interactions according to functional categories
and represented the results in terms of a matrix M whose generic element Mðsi;sjÞ

represents the fraction of links between pairs of proteins performing, respectively,
functions si and sj : They found that the reference set adopted shows considerably
higher values along the matrix diagonal, thus in correspondence of shared functions
between proteins.
Here we would like to go further in the investigation about the correlation between

the pattern of interactions among proteins and their functionalities, with the purpose
of reaching a deepened understanding of biological significance of network
architecture. The protein–protein interaction networks of the S. Cerevisiae we have
considered are those already investigated in Section 3 from a topological point of
view, i.e., (I) the two-hybrid data in Refs. [11,12], (II) the data set obtained with an
experiment of TAP [13], (III) a heterogeneous collection of interactions detected by
different techniques, documented at the Database of Interacting Proteins (DIP) [49].
The functional classification was extracted from the MIPS database [93]; the finest
functional classification scheme consists of 424 different functional classes, while the
coarse-grained one contains only 18 functional categories. The number of proteins in
each data set with no defined functional classification (i.e., belonging to the
categories named ‘‘classification not yet clear-cut’’ and ‘‘unclassified proteins’’) is,
respectively: 638 out of 2152 in (I), 279 out of 1361 in (II) and 1665 out of 4713
in (III).
In order to review the likelihood that functionally related proteins are directly

connected in the PIN, we compute the rate of interacting protein pairs sharing at
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least one functional category, in all three data sets examined. Only classified proteins
are taken into account here, together with the whole set of functions they perform.
The values obtained adopting the coarse-grained level of functional classification are
83% of interactions between proteins with at least one function in common in two-
hybrid data, 83% for TAP and 72% for DIP data set (III). This seems to confirm
previous observations, although, the sensitive decrease observed in (III) respect to (I)
and (II) highlights the need for caution when interpreting DIP data, since it might
indicate the presence of a large amount of false positives.
To determine the actual significance of these results, we compare them with the

rates of shared functionalities obtained in two distinct null models, compatible with
the constraints embodied by the number of proteins belonging to each functional
category. The first null model (NM1) consists in a functional rewiring of the network.
Starting from the PINs considered, we choose at random two proteins pi and pj and
exchange their annotations. Unclassified proteins are also considered in the rewiring
and the underlying network is not modified. The procedure is repeated a number of
times large enough to obtain a network sufficiently ‘‘scrambled’’ but still preserving
the composition of each multi-functional annotation. The second null model (NM2),
instead, is based on a random functional assignment on the empty network. Starting
from the network of interactions with no functional annotation, we randomly assign
functions to proteins extracted with uniform probability, following three constraints:
(a) the number of proteins belonging to each functional category must be globally
conserved; (b) a protein cannot be assigned the same function twice; and (c) the
number of unclassified proteins must be conserved.
Performing 100 realizations of each null model, we obtain the average values of

the rate of interactions between proteins having at least one function in common,
together with their standard deviations (see Table 2).
We notice that the random rates of shared functionalities between interacting

proteins obtained in the two null models are similar and are both considerably lower
than the corresponding real values (exp in Table 2) computed on experimental data.
These observations indicate the emergence of a marked correlation between physical
link and functional association in protein–protein interaction networks.
The results shown are obtained considering the whole set of classified proteins,

independently of their degrees. In order to investigate a possible dependence of the
shared functional rate on degree, we have computed the same quantity for low- and
Table 2

Rates of interacting protein pairs sharing at least one functional category. Results obtained from the three

networks (exp) are compared with the values averaged over 100 realizations of the two null models, NM1

and NM2, described in the text

Ratelink!fcommon (I) (%) (II) (%) (III) (%)

exp 82.90 82.89 72.36

NM1 ð60:55� 0:19Þ ð65:35� 0:22Þ ð49:28� 0:15Þ
NM2 ð60:64� 0:20Þ ð64:05� 0:20Þ ð49:62� 0:16Þ
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Table 3

Comparison among the rates of interacting protein pairs sharing at least one functional category

computed on: the whole set of links (link(8k; 8k)); link(ksmall ; ksmall) between proteins with small degree;

link(klarge; klarge) between proteins with large degree; link(ksmall ; klarge) between proteins having,

respectively, small and large degree, with the average connectivity hki being the separation value. For

comparison, we report also the values obtained with the two null models—NM1 and NM2

Ratelink!fcommon (I) (%) (II) (%) (III) (%)

link(8k; 8k) 82.90 82.89 72.36

link(ksmall ; ksmall) 80.85 81.16 63.71

link(klarge; klarge) 88.50 85.33 78.76

link(ksmall ; klarge) 75.30 79.70 63.17

NM1 ð60:55� 0:19Þ ð65:35� 0:22Þ ð49:28� 0:15Þ
NM2 ð60:64� 0:20Þ ð64:05� 0:20Þ ð49:62� 0:16Þ
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high-connectivity proteins. The average connectivity hki is the separation value:
ksmall indicates low degrees (ksmallohki), klarge refers to high degrees (klarge4hki). In
Table 3 we report results obtained from the experimental data corresponding to
networks (I), (II) and (III) and compare them with results from the null models. No
distinctions based on protein connectivity are considered in the null models, since
functional annotation is by definition uncorrelated with topology.
A common behavior can be observed in all networks: the rate of functional

commonality between interacting proteins increases when considering two proteins
with large degree klarge; while it is considerably lower when the connected pair is
composed at least by a protein with small degree ksmall : The lowest value is assumed
in correspondence of the type of links (ksmall ; klarge). We have also investigated the
role of peripheral proteins (k ¼ 1), being affected by false interactions with higher
probability. We have thus computed the same quantities as before without including
peripheral proteins among those with ksmall : The observed trend is unchanged,
showing a deeper correlation of functional characterization with topology, which
should be investigated in the next future. As we will see in the next section this
general feature will be exploited in protein function prediction methods.

5.2. Function prediction methods

Despite the impressive progresses performed during the last years in genome
sequencing and high-throughput proteomics techniques, a great amount of encoded
proteins per completely sequenced genome is still functionally uncharacterized [94],
so that the development of bioinformatics methods for function prediction assumes a
crucial importance in order to fully exploit genome data. The list of available in silico
approaches to protein function prediction is extensive and includes methods based
on sequence similarity, clustering patterns of co-regulated genes [95,96], phylogenetic
profiles [97] and analysis of protein complexes [13,14]. In this section we will focus on
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those methods [11,12,90,98–101] that more closely rely on the assumed correlation
between function and topology for which evidences have been discussed in the
previous section.
The basic strategy usually relies on the assumption that two proteins will be more

likely functionally related when they are close to each other, rather than if they are
far away in the network. This assumption has been first exploited in the ‘‘majority
rule’’ method [98,99], whose functional assignment for an uncharacterized protein is
obtained by looking at the functional annotations of its classified neighbors. The
assignment proposed consists of the most common function(s) among the ones
performed by the classified binding partners.
Capitalizing on the majority rule method, Samantha and Liang [90] assumes that

couples of proteins that share a large number of common neighbors are most likely to
be functionally related and therefore the function of one of the two member of the
couple can be deduced if that of the other is known. The mechanism of duplication
and divergence discussed earlier provides a rationale to this method: proteins sharing a
large number of common partners are also those that more recently diversified from a
common ancestor and therefore those whose functions have emerged as a subfunction
of the common parent’s function. A further modification of the basic majority rule
strategy is proposed in Ref. [101] where predictions are made on the basis of a tree-like
network of interactions constructed with the introduction of a new definition of
‘‘functional’’ distance between proteins. The latter takes into account not only the
shortest path between the proteins but even their number of common partners.
All the methods above offer insights on the structure of protein network

functionality from a different point of view and have their own range of applicability.
A method that appears to have a more general and automatic applicability is the
‘‘global optimization model’’ (GOM) described in Ref. [100]. Leveraging on the same
assumptions on which the ‘‘majority rule’’ [99] is based on, it addresses one of its main
weakness, namely the fact that the majority rule completely disregards the role played
by the unclassified proteins in the function assignment process. In poorly annotated
interactomes, infact, the potential information conveyed by the unknown proteins
could easily overweight that from the un-annotated ones. More specifically, the
functional assignment GOM gives to an unclassified protein depends on the
annotations of the entire set of its binding partners, considering both classified and
unclassified proteins. The method is thus able to provide an assignment for all
uncharacterized proteins in the network, in a self-consistent way, taking into account
also the functional information carried by connections between proteins of unknown
function. A score E is associated to each functional assignment, by looking at shared
functionalities between connected proteins:

E ¼ �
X

ioj

Jijdsi ;sj
�

X

i

hiðsiÞ , (10)

where Jij ¼ 1 only if the two proteins i and j are both unclassified and directly
connected, otherwise Jij ¼ 0; si is the function of protein i, dl;m is the discrete delta
function and hiðsiÞ represents the number of classified binding partners of protein i

sharing the same function si: The score assigns value �1 to each connection between
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unclassified proteins or between classified and unclassified proteins when sharing a
common function. The functional assignment proposed by the method is the one that
minimizes the cost function E over the whole network, thus performing a global
optimization, while majority rule algorithm, ignoring connections between proteins
with unknown functions, is obtained by minimizing the second term only of the right-
hand side of Eq. (10). Interestingly, the optimization process leads to several equivalent
or nearly equivalent minima corresponding to equal or very close values of the score
function. Indeed, the computational problem is frustrated because of the presence of
the boundary conditions imposed by the classified proteins, which do not allow to
satisfy all requested shared functionalities between interacting proteins. The functional
annotations proposed by the GOM are those of the optimal configurations which
correspond to the minima of the score function evaluated on the whole network,
therefore allowing in a natural way for multiple assignments.
Several quantities have been investigated in order to test the functional predictions

proposed by the global optimization method. The predictive accuracy has been
evaluated by testing the method on a set of classified proteins and quantified by the
introduction of a measure of the rate of successful predictions, which corresponds to
the percentage of proposed assignments actually recovering correct annotations of
the test proteins. The accuracy of the method depends on several factors, including
the classification scheme adopted, the particular network considered and on the
fraction of classified proteins present, but is surprisingly reliable. Results show that
accuracy increases with the degree of the unclassified protein under consideration
and approach the maximum achievable when the coarsest functional scheme and
well connected proteins are considered. Also, the method proved very robust against
the presence of false positives/negatives links by which data sets are certainly
affected. The promising results obtained with GOM have recently motivated further
studies in this direction aimed at modifying the score function in Eq. (10) in order to
take more throughly into account the topological structure of the network and the
observed correlation between interacting proteins [102].
6. Outlook

As most often in the biological context, results concerning the analysis of PINS are
not exempt from various caveats. Nevertheless, the global statistical analysis of the
ever increasing number of data sets available provides a general conceptual
framework in which eventually many questions concerning evolution, biological
function and the network topology may be addressed. Indeed, several groups have
started to obtain interesting findings concerning the modular architecture of PINs
and its role in the evolutionary process. For instance, specific topological motifs of
the protein interaction networks might be associated with functional modules
providing a first step in connecting the biological networks topological architecture
to their detailed function and evolution. At the same time, genome sequencing and
PINs data gathering of different organisms open exciting opportunities for
comparative analysis and evolutionary studies [6,21–23]. The detection of the
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particular role at the evolutionary level of proteins belonging to specific
topological motifs finds an immediate impact in evolutionary models for the PIN
based on duplication–divergence mechanisms. As well, the relevance of specific
motifs and local configuration analysis aimed at identifying cellular function
modules may enrich local and global algorithm for protein function assignment
based on the PIN. In this perspective, the results reviewed in this paper might
represent a relevant contribution toward the answer of specific and detailed
questions about biological complexity.
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