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We develop a general theory for percolation in directed random networks with arbitrary two-point correla-
tions and bidirectional edges—that is, edges pointing in both directions simultaneously. These two ingredients
alter the previously known scenario and open new views and perspectives on percolation phenomena. Equa-
tions for the percolation threshold and the sizes of the giant components are derived in the most general case.
We also present simulation results for a particular example of uncorrelated network with bidirectional edges
confirming the theoretical predictions.
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I. INTRODUCTION

A wide class of real systems of many interacting elements
can be mapped onto graphs or networks. Under this ap-
proach, vertices or nodes of the network represent the ele-
ments of the system whereas edges or links among them
stand for interactions between different elements. This map-
ping has triggered a huge number of works and a surge of
interest in the field of complex networks that has led to a
general framework within which to analyze their topology as
well as the dynamical processes running on top of them
�1–3�. In many cases, these dynamical processes are directly
related to functionality and involve some kind of transport or
traffic flow. Furthermore, the very existence of those net-
works could be naturally explained as a direct consequence
of the communication need among its constituents. The In-
ternet or the World Wide Web are clear examples �4�. In
order to preserve functionality, networks characterized by
transport processes must be connected; that is, a path must
exist between any pair of nodes, or, at least, there must exist
a macroscopic portion of vertices—or giant component—
able to communicate. In this context, percolation theory ap-
pears as an indispensable tool to analyze the conditions un-
der which such connected structures emerge in large
networks.

The general theory of percolation phenomena for uncor-
related undirected random networks was first developed by
Newman and co-workers �5,6� after previous results in �7,8�.
The phase transition at which the giant component forms was
well characterized, and the size distribution of connected fi-
nite components below and above the critical point was cal-
culated as well. Some further refinements were needed in
order to approach real nets. Hence, correlations between de-
grees of neighboring vertices were taken into account in
�9–11� and growing networks were treated by Dorogovtsev
et al. �12� and Krapivsky and Derrida �13�.

To go further, directness must be taken into consideration
since some of the most interesting real networks present
asymmetric interactions. Noticeable examples are the World
Wide Web �14�, citation networks �15,16�, email networks
�17�, gene regulatory networks �18�, or metabolic networks
�19�. Percolation theory for purely directed networks was
first developed by Newman and co-workers �5,6� and later
by Dorogovtsev et al. �20�. In the particular case of scale-

free degree distributions a number of interesting specific re-
sults were obtained �21�. While allowing for general correla-
tions between the incoming and outgoing numbers of edges
of a given vertex, all these studies refer to networks with no
degree correlations. Furthermore, the theory is restricted to
the class of directed networks with no bidirectional edges,
although this class of edges is ubiquitous to all real directed
networks �see �22� and references therein�. All these limit the
applicability of the theory to real networks since bidirec-
tional edges and degree correlations are common to all real
directed networks. In this paper we present a general theory
for percolation in directed random networks with general
two-point correlations and bidirectional links. We will show
that the presence of bidirectional edges and degree correla-
tions modify the picture previously drawn �5,6,20,21� in a
nontrivial way, opening new scenarios for percolation phe-
nomena.

The paper is organized as follows. In Sec. II, we review
concepts, definitions, and the main results previously ob-
tained in the analysis of percolation in random networks. In
Sec. III, we develop the general theory for directed networks
with bidirectional edges and arbitrary degree correlations and
we show how the theories for undirected and purely directed
random networks stand as particular cases. Section IV is de-
voted to the uncorrelated case, which deserves special atten-
tion as a null or benchmark model. The relative sizes of the
giant components are computed and the explicit expression
for the percolation condition is provided. The well-known
critical points signaling the phase transition in undirected
and purely directed uncorrelated networks are recovered as
limiting cases. A practical application of the formalism for
uncorrelated networks is presented in Sec. V, where the
transformation from a purely directed network to a purely
bidirectional one is studied. For power-law degree distribu-
tions, the transformation is shown to undergo a nontrivial
phase transition. Simulation results support this prediction,
finding an excellent agreement with numerical solutions of
the theoretical equations. Finally, we conclude with a brief
report of results in Sec. VI.

II. PERCOLATION IN UNCORRELATED PURELY
DIRECTED NETWORKS

The topological structure of directed networks is more
complex than that associated with undirected graphs. The
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edges associated with each node in a directed net are usually
differentiated into incoming and outgoing. Usually, no bidi-
rectional links are considered so that each vertex has two
coexisting degrees ki and ko, which sum up to the total de-
gree k=kin+kout. Hence, the degree distribution for a directed
network is a joint degree distribution P�ki ,ko� of in- and
out-degrees, which in general may be correlated. The bidi-
rectional edge symmetry of undirected networks is thus com-
pletely broken in purely directed ones, with implications
down to the level of percolation properties. The giant con-
nected component in undirected graphs becomes internally
structured in the case of directed networks so that four dif-
ferent types of giant components may arise �see Fig. 1�.
Whether giant or not, these components are characterized as
follows �according to definitions in �20��.

�i� The weakly connected component �WCC�, the perco-
lative cluster in undirected graphs. In the WCC, every vertex
is reachable from every other, provided that the directed na-
ture of the edges is ignored.

�ii� The strongly connected component �SCC�, the set of
vertices reachable from its every vertex by a directed path.

�iii� The in-component �IN�, all vertices from which the
SCC is reachable by a directed path.

�iv� The out-component �OUT�, all vertices which are
reachable from the SCC by a directed path.

Notice that, with these definitions, the SCC in included in
both the IN and OUT components. The percolation theory
developed by Newman and co-workers �5,6� and Dorogovt-
sev et al. �20� for directed graphs with arbitrary degree dis-
tribution and statistically uncorrelated vertices has shown
that there are two phase transitions: the one at which the
giant weakly connected component �GWCC� appears and the
one at which the other three giant components appear simul-
taneously: the giant in-component �GIN�, the giant out-
component �GOUT�, and the giant strongly connected com-
ponent �GSCC� as the intersection of the other two. The first
phase transition corresponds in fact to the standard phase
transition in an undirected random graph with arbitrary de-
gree sequence and statistically uncorrelated vertices. The
condition for this phase transition was first given by Molloy
and Reed �7� and reads

�
k

k�k − 2�P�k� � 0. �1�

When this condition is fulfilled and although some discon-
nected finite components may remain, the GWCC emerges.
It contains a macroscopic portion of the vertices in the net-
work capable of communicating with each other regardless
of the orientation of their links. The second phase transition
is characteristic of directed networks. The critical point �6�

�
ki,ko

ko�ki − 1�P�ki,ko� = 0 �2�

marks the first simultaneous appearance of the other three
giant components: the GSCC, the GIN, and the GOUT, as
well as other secondary structures such as tubes or tendrils
�14�. In this case, the different giant components can be
quantified using their relative sizes gin, gout, and gscc, which
measure the number of vertices in each set divided by the
total number of vertices.

The efforts to understand how this landscape is modified
by the consideration of correlations between degrees of
neighboring vertices has been exclusively focused on the
percolation analysis of undirected networks �9–11�. Assorta-
tive mixing by degree, observed in the vast majority of social
real networks, has been found to favor percolation in the
sense that the giant component appears at lower edge density.
On the contrary, disassortative correlations, characteristic of
technological and biological networks, make difficult the for-
mation of the giant component even if the second moment of
the degree distribution diverges.

III. GENERALIZED PERCOLATION

In this section we develop a general theory for percolation
in directed random networks with arbitrary two-point degree
correlations and bidirectional edges. We term our networks
“random”—or Markovian—because, apart from purely local
properties and two-point correlations being fixed, networks
are maximally random. This implies that the whole topology
is encoded into the degree distribution P�k�� P�ki ,ko ,kb�
and the transition probabilities Pi�k� �k�, Po�k� �k�, and
Pb�k� �k� measuring the probability to reach a vertex of de-
gree k� leaving from a vertex of degree k using an incoming,
outgoing, or bidirectional edge, respectively. Notice that we
have used the notation k��ki ,ko ,kb� and that we consider all
three kind of edges as independent entities. These transition
probabilities are related through the following degree de-
tailed balance conditions �23�:

kbP�k�Pb�k��k� = kb�P�k��Pb�k�k�� �3�

and

koP�k�Po�k��k� = ki�P�k��Pi�k�k�� . �4�

These conditions assure that any edge leaving a vertex points
to another vertex or, in other words, that the network is
closed. Notice that this may not be the case in situations
where information is incomplete and the out-degree of a ver-
tex is known but not the neighbors at the end of these edges.

FIG. 1. �Color online� Schematic representation of the compo-
nent structure of a directed network.
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To analyze the percolation properties for this class of net-
works, it is necessary to calculate the joint distribution
G�s ,s�� of the number of vertices �plus itself�, s, that are
reachable from a given vertex and the number of vertices
�plus itself�, s�, that can reach that vertex. Notice that we can
leave a vertex using an outgoing or bidirectional edge and
we can arrive at a vertex through an incoming or bidirec-
tional edge. These sets of vertices are called the out- and
in-components of a given vertex, respectively. Analogously,
we can define the marginal probabilities Go�s� and Gi�s� for
the number of reachable vertices from a given one and the
number of vertices that can reach it, respectively. These three
functions contain the information of the sizes of the different
giant components of the network. Notice that, if the network
is above the percolation threshold, Go�s���s�G�s ,s�� and
Gi�s���s�G�s� ,s�. The probability to belong to a finite com-
ponent is smaller than 1 in this situation, which implies that
the remainder corresponds to the probability to belong to an
infinite component—that is, the giant component. The func-
tion Go�s�, for instance, measures the probability that a given
vertex has a finite out-component of size s regardless of the
size of its in- component, which can be finite or not. On the
other hand, the function �s�G�s ,s�� only accounts for finite
components. Therefore, the relative sizes of the different gi-
ant components of the network can be written as

gout = 1 − �
s

Gi�s�, gin = 1 − �
s

Go�s� �5�

and

gscc = 1 − �
s

Go�s� − �
s

Gi�s� + �
s,s�

G�s,s�� , �6�

where the GOUT is thought of as the set of vertices with an
infinite in-component, the GIN as the set of vertices with an
infinite out-component, and the GSCC as the set of vertices
with infinite in- and out-components simultaneously.

In heterogeneous networks, this set of probabilities de-
pends on the degree of the vertex from where we start the
count. Therefore, the functions G�s ,s��, Go�s�, and Gi�s� are
to be expressed as

Gi�s� = �
k

P�k�Gi�s�k�, Go�s� = �
k

P�k�Go�s�k� �7�

and

G�s,s�� = �
k

P�k�G�s,s��k� , �8�

where the functions G inside the summations have the same
meaning as the original ones under the condition of starting
from a vertex of degree k. Thus, the complete solution of the
problem goes through finding the conditional probabilities
Gi�s �k�, Go�s �k�, and G�s ,s� �k�. In the following subsec-
tions we will show how to compute them in the general
correlated case.

A. In- and out components

To proceed further, we first focus our attention on the
out-component size distribution of a vertex of degree k,

Go�s �k�. Starting from a vertex of degree k= �ki ,ko ,kb�, we
can leave it using the ko outgoing edges and the kb bidirec-
tional ones. Then, the number of reachable vertices will be
the sum of the reachable vertices of each of the ko+kb neigh-
bors plus 1. In mathematical terms, this translates into

Go�s�k� = �
s1

¯ �
sko+kb

go�s1�k� ¯ go�sko
�k�

�go
b�sko+1�k� ¯ go

b�sko+kb
�k��s1+¯+sko+kb

+1,s, �9�

where go�s �k� �go
b�s �k�� is the distribution of the number of

reachable vertices from a vertex given that we have arrived
to it from another source vertex of degree k following one of
its outgoing �bidirectional� edges. In writing Eq. �9�, we have
used the fact that sparse random networks—those with finite
average degree—are locally tree like.1 Equations of the type
of Eq. �9� find in the discrete Laplace space their natural
representation in terms of the generating function formalism.
Using this formalism, these equations simplify enormously
and can be manipulated very easily. Within this formalism,
Eq. �9� simplifies as

Ĝo�z�k� = z�ĝo�z�k��ko�ĝo
b�z�k��kb, �10�

where we have adopted the notation f̂�z���sf�s�zs. In what
follows, we will work in the discrete Laplace space, using
the generating function formalism.

The functions go and go
b satisfy the following set of

coupled equations:

ĝo�z�k� = z�
k�

Po�k��k��ĝo�z�k���ko��ĝo
b�z�k���kb�,

ĝo
b�z�k� = z�

k�

Pb�k��k��ĝo�z�k���ko��ĝo
b�z�k���kb�−1. �11�

The term kb−1 in the second equation of Eqs. �11� comes
from the fact that one of the bidirectional edges has already
been used to reach the vertex of degree k� and, thus, cannot
be used again to leave it. Notice that this restriction is not
needed in the first equation of Eqs. �11� since, in this case,
we have reached the vertex using an outgoing edge of the
source vertex. The set of equations �11� is closed for the
functions g. Its solution for z=1 will allow us to compute the
relative size of the GIN component,

gin = 1 − �
k

P�k��ĝo�1�k��ko�ĝo
b�1�k��kb. �12�

The trivial solution of Eqs. �11� is ĝo�1 �k�=1, ĝo
b�1 �k�

=1, corresponding to the only case without giant component.

1The condition of being sparse is typically fulfilled by real random
networks. This allows for a proper definition of statistical quantities,
like the degree distribution, independently of the size of the net-
work. On the other hand, the condition of being locally tree like is,
in some cases, not totally satisfied and the clustering coefficient
must be taken under consideration. Nevertheless, percolation theory
for random networks represents an upper bound to the real perco-
lation phenomena and, thus, is equally important.
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Therefore, the network will percolate at the directed level
when this trivial solution becomes unstable. To analyze the
stability of this solution we use the approach adopted in �11�
and find solutions of the form ĝo�1 �k�=1−�x�k�, ĝo

b�1 �k�
=1−�y�k� in the limit �→0. Replacing these expressions in
Eqs. �11� and taking the limit �→0 we obtain

�x�k�
y�k�

	 = �
k�

Ckk�
o �x�k��

y�k��
	 , �13�

where the matrix Ckk�
o is defined as

Ckk�
o � �ko�Po�k��k� kb�Po�k��k�

ko�Pb�k��k� �kb� − 1�Pb�k��k�
	 . �14�

The stability of the solution ĝo�1 �k�=1, ĝo
b�1 �k�=1 is thus

determined by the maximum eigenvalue of the matrix Ckk�
o ,

�m. When �m�1 this solution is stable and the GIN com-
ponent does not exist. In contrast, when �m�1 a nontrivial
solution of the set of equations �11� exists and the GIN com-
ponent emerges.

The analysis for the in-component of individual vertices is
identical to the case of the out one if we replace in Eqs. �10�
and �11�

ko → ki,

go�s�k� → gi�s�k� ,

go
b�s�k� → gi

b�s�k� ,

Po�k��k� → Pi�k��k� . �15�

In this case, the matrix controlling the onset of the GOUT
component is

Ckk�
i � �ki�Pi�k��k� kb�Pi�k��k�

ki�Pb�k��k� �kb� − 1�Pb�k��k�
	 . �16�

As before, the condition for the appearance of the GOUT
component is ruled by the maximum eigenvalue of the ma-
trix Ckk�

i . At first glance, one could be tempted to conclude
that, since the matrices Ckk�

i and Ckk�
o are different, their

eigenvalues are also different, leading to different phase tran-
sitions for the appearance of the GIN and GOUT compo-
nents. However, it can be proved that the eigenvalues spectra
of both matrices are identical and, then, both the GIN and
GOUT components appear simultaneously.

It is illustrative to recover from this formalism the results
for the purely undirected and purely directed cases. In indi-
rected networks, only bidirectional edges are present, ki�0
and ko�0, and the matrices turn into

Ckk�
o → Ckbkb�

= �kb� − 1�P�kb��kb� ,

Ckk�
i → Ckbkb�

= �kb� − 1�P�kb��kb� , �17�

recovering the results in �11�. In the case of purely directed
networks, kb�0 and we obtain

Ckk�
o → Ckk�

o = ko�Po�k��k� ,

Ckk�
i → Ckk�

i = ki�Pi�k��k� . �18�

This result generalizes the percolation theory for purely di-
rected random networks developed in �5,6,20� to the case of
arbitrary degree-degree correlations.

B. Strongly connected component

The analysis of the GSCC requires a more careful devel-
opment of the ideas introduced in the previous section. In
this case, the joint distribution of the in- and out-components
of a vertex of degree k reads

Ĝ�z,z��k� = zz��ĝo�z�k��ko�ĝb�z,z��k��kb�ĝi�z��k��ki, �19�

where the function gb�s ,s� �k� is defined analogously to
go

b�s �k� and gi
b�s �k�. It is worth mentioning that, if the net-

work contains bidirectional edges, G�s ,s� �k�
�Go�s �k�Gi�s� �k� because, in this case, such edges are com-
mon to the in- and out-components of the vertex. Using the
same reasoning as in the previous section, we can write
down a closed equation for the joint distribution gb�s ,s� �k�:

ĝb�z,z��k� = zz��
k�

Pb�k��k�

��ĝo�z�k���ko��ĝb�z,z��k���kb�−1�ĝi�z��k���ki�.

�20�

This equation, together with Eq. �10� and Eqs. �11�, is the
complete solution of the problem. The solutions for arbitrary
values of z and z� allow one to find the distribution of the
sizes of the in- and out-components of single vertices
whereas the nontrivial solution for z=1 and z�=1, combined
with Eqs. �5� and �6� and Eqs. �7� and �8�, will provide us
with a method to calculate the size of the different giant
components of the network.

IV. UNCORRELATED NETWORKS

As mentioned before, real networks are usually correlated
in the sense that the degrees of pairs of connected vertices
are correlated random quantities. Nevertheless, uncorrelated
networks are equally useful as benchmarks, or null models,
to test topological and dynamical properties and compare
them to the results obtained in correlated networks.

When two-point correlations are absent, the transition
probabilities become independent of the degree of the source
vertex. In this situation, after some elemental algebra, we
obtain

Po�k��k� =
ki�P�k��


ki�
, Pi�k��k� =

ko�P�k��

ki�

�21�

and

Pb�k��k� =
kb�P�k��


kb�
, �22�

where we have made use of the fact that 
ko�= 
ki�. Using
these expressions, the set of equations �11� reduces to the
following set of trascendent equations:
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y = 
ki�−1�xP̂�1,y,z�, z = 
kb�−1�zP̂�1,y,z� ,

x = 
ki�−1�yP̂�x,1,z��, z� = 
kb�−1�z�P̂�x,1,z�� ,

z� = 
kb�−1�z�P̂�x,y,z�� , �23�

where P̂�x ,y ,z� is the generalized generating function of the
degree distribution—that is,

P̂�x,y,z� � �
ki,k0,kb

xkiykozkbP�ki,ko,kb� . �24�

The condition for the existence of a nontrivial solution of the
set of equations �23� is easily obtained using the formalism
developed in the previous sections. For the uncorrelated
case, the matrices Ckk�

i and Ckk�
o become independent of k

and its maximum eigenvalue reads

�m =
1

2
� 
kb�kb − 1��


kb�
+


kiko�

ki�

+
�
kb�kb − 1��

kb�

−

kiko�

ki�

	2

+
4
kikb�
kokb�


ki�
kb� � ,

�25�

so that, whenever the condition �m�1 is fulfilled, the net-
work is in the percolated phase. As can be seen from Eq.
�25�, the presence of bidirectional edges alters the point at
which the giant component arises in a nontrivial way. The
term �= 
kikb�
kokb� / 
ki�
kb� measures the strength of the
coupling between directed and bidirectional edges. When
this coupling is weak, ��0 and the maximum eigenvalue
takes the simple form

�m � max� 
kb�kb − 1��

kb�

,

kiko�

ki�

� . �26�

This result is easy to understand since, when ��0, vertices
cannot have directed and bidirectional edges simultaneously
and, as a consequence, the network is composed of two iso-
lated networks, one of them purely directed and the other one
containing bidirectional edges only.2

In the purely undirected case, ki�0 and ko�0 and we
recover the well-known condition for percolation in undi-
rected networks with given degree distribution, Eq. �1�:

�m =

kb�kb − 1��


kb�
� 1. �27�

In the case of purely directed networks, kb�0 and the maxi-
mum eigenvalue reads

�m =

kiko�

ki�

� 1, �28�

recovering Eq. �2�.

When �	1, �m must be computed using Eq. �25� and, in
general, will depend on the density of edges, as well as on
the type of correlations between directed and bidirectional
edges. In particular, a positive correlation between kb and ki
or ko can strongly favor the emergence of the giant compo-
nent even if the density of bidirectional edges is very small.
We will illustrate this point in the example of the next sec-
tion.

To finish the uncorrelated analysis, let us compute the
relative sizes of the giant components. Let �xc ,yc ,zc ,zc� ,zc��
be the nontrivial solution of the set of equations �23�; then,
using Eqs. �5� and �6�, the relative sizes of the different giant
components of the network read

gin = 1 − P̂�1,yc,zc�, gout = 1 − P̂�xc,1,zc�� , �29�

gscc = 1 − P̂�1,yc,zc� − P̂�xc,1,zc�� + P̂�xc,yc,zc�� . �30�

This set of equations reduces to the results obtained in �6,20�
if bidirectional edges are not present in the network. In the
next section, we present a practical application of this for-
malism.

V. BIDIRECTIONAL EDGES AS PERCOLATION
CATALYSTS

Suppose we have a purely directed network with degree
distribution P�ki ,ko� and no two-point degree correlations.
Suppose also that the network is in a regime in which the
GWCC exists but not the GSCC—that is,


kiko�

ki�


 1,

�ki + ko��ki + ko − 1��


�ki + ko��
� 1. �31�

Now we transform the original network by converting each
directed edge into a bidirectional one with probability p. Af-
ter this transformation, we end up with a network with pE
bidirectional edges and �1− p�E directed ones, where E is the
original number of directed edges on the network. The de-
gree distribution of the transformed network can be written,
in the discrete Laplace space, as

P̂p�zi,zo,zb� = P̂„pzb + �1 − p�zi,pzb + �1 − p�zo… . �32�

This transformation undergoes a phase transition as we in-
crease the value of p. When p=0, the network is purely
directed and, by construction, it has no GSCC. When p=1,
all edges become bidirectional and, thus, the GSCC is iden-
tical to the GWCC of the original network. Therefore, at
some intermediate value pc, the network percolates and a
GSCC emerges. The value of pc can be easily obtained using
the expression for the maximum eigenvalue, Eq. �25�, and
the final degree distribution, Eq. �32�.

The most interesting case corresponds to networks with
marginal degree distributions following power laws of the
form Pi�ki��ki

−�i and Po�ko��ko
−�o with �i ,�o�3. When the

transformation described above is performed in this type of
networks, some of the terms in Eq. �25� are proportional to

ki

2� and 
ko
2� and, consequently, �m→� in the thermody-

namic limit. This, in turn, implies that pc=0; that is, even an

2Notice that, in our context, uncoupled is not a synonym of un-
correlated. Indeed, �=0 corresponds to the strongest anticorrelation
between ki and kb because when one of them is different from zero
the other one is always zero.
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infinitely small fraction of bidirectional edges suffices to per-
colate the network.

A. Numerical simulation

To check the accuracy of our theory in the case of power-
law marginal degree distributions, we have performed exten-
sive numerical simulations. We first generate purely directed
random networks with degree distribution of the form
P�ki ,ko�= Pi�ki�Po�ko� and no two-point correlations. The in-
and out-degree distributions are taken to be identical and to
follow a scale-free form of the type

Pi�k� = Po�k� = �P0, k = 0,

�1 − P0�

���k� , k � 1, � �33�

where 
��� is the zeta Riemann function. To generate a
purely directed random network, we use a natural extension
of the configuration model �7,8,24,25�—an algorithm in-
tended to generate uncorrelated random networks with a
given degree distribution. The algorithm starts by first as-
signing to a set of N vertices a pair of “stubs,” one of them
incoming and the other one outgoing, ki and ko, randomly
drawn from the distribution P�ki ,ko�. The only requirement
is that �iki=�iko, whenever one wishes to close the network.
The network is constructed by selecting pairs of in- and out-
stubs chosen uniformly at random to create directed edges,
avoiding multiple, bidirected, and self-connections among
vertices. Once the network has been assembled, each di-
rected edge is transformed into a bidirectional one with prob-
ability p, and the relative sizes of the giant components are
measured.

Figures 2 and 3 show simulation results for a scale-free
network following Eq. �33� with exponent �=3 and size N
=106 as compared to the numerical solution of Eqs. �23�. As
can be seen, the agreement between simulation results and

the theoretical prediction is excellent. The relative sizes of
the GSCC and GIN are shown as a function of the conver-
sion probability p for different values of the distribution pa-
rameter P0, the probability of nodes having null in- or out-
degree. Even for very small values of p, the GSCC and GIN
are evident. As expected, small values of P0 favor the growth
of bigger giant components. Then, bidirectional edges act as
a percolation catalysts, favoring the appearance of a fine
structure in the giant connected component. The scale-free
property of many real networks is, once more, indicative of
interesting features, since, in this case, the presence of an
infinitesimal fraction of bidirectional edges is enough to en-
sure percolation at the level of the directed components.

VI. CONCLUSIONS

We have derived a very general formulation of the theory
of percolation in directed random networks with bidirec-
tional edges and arbitrary two point degree correlations. Our
formalism accounts for all the previously known results for
percolation in purely directed and purely undirected random
networks, which stand as limiting cases of our theory. The
percolation threshold for the most general situation is de-
rived as a function of the maximum eigenvalue of the con-
nectivity matrices. In particular, for networks with no two-
point correlations, explicit expressions are provided
depending on the first and second moments of the degree
distribution P�k�. In this case, we have also shown that bi-
directional edges act as a catalyst for percolation, favoring
the emergence of the GSCC, and for scale-free networks,
only an infinitesimal fraction of bidirectional edges is
needed.

FIG. 2. �Color online� Relative size of the giant strongly con-
nected component as a function of the conversion probability p.
Simulation results are for a single network with N=106 vertices.
Solid lines are the numerical solution of the set of equations �23�.

FIG. 3. �Color online� Relative size of the giant in component as
a function of the conversion probability p. Simulation results are for
a single network with N=106 vertices. Solid lines are the numerical
solution of the set of equations �23�.
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After the completion of this work, we have become aware
of a recent preprint �26� where the classical susceptible-
infected-recovered �SIR� model of epidemiology is analyzed
in uncorrelated directed random networks with bidirectional
edges. Since there exists a mapping between the SIR model
and percolation theory, some of the results derived in that
reference overlap our results for the uncorrelated case.
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