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Widespread occurrence of the inverse square distribution in social sciences and taxonomy

Guido Caldarelli,1,2 Cécile Caretta Cartozo,1 Paolo De Los Rios,3 and Vito D. P. Servedio1
1INFM, UdR ROMA 1, Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Roma, Italy

2Istituto di Studi e Ricerche ‘‘Enrico Fermi’’ Compendio Viminale, 00184 Roma, Italy
3Laboratoire de Biophysique Statistique, ITP-FSB, Ecole Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland

~Received 20 November 2003; published 10 March 2004!

The widespread occurrence of an inverse square relation in the hierarchical distribution of subcommunities
within communities~or subspecies within species! has been recently invoked as a signature of hierarchical
self-organization within social and ecological systems. Here we show that, whether such systems are self-
organized or not, this behavior is the consequence of the treelike classification method. Different treelike
classifications~both of real and truly random systems! display a similar statistical behavior when considering
the sizes of their sub-branches.
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Taxonomy is one of the major classification schemes
use in all natural and social sciences. The main underly
assumption driving a taxonomic class partition is that
entities under study are hierarchically organized: for
ample, in biology four differentspecies~e.g., lions, tigers,
lynxes, and cats! can be grouped into twogenera~lions and
tigers into Pantherinae, lynxes and cats into Felinae!, which
in turn belong to the samefamily ~Felidae!; in social sciences
different subcommunities can be grouped in the same c
munity and so on: supporters of different soccer teams ca
grouped, at a higher level, as soccer fans that in turn,
gether with fans of other disciplines, can be grouped
sports fans and so on. Therefore, taxonomic trees carry
formation about the laws of organization of organisms a
communities. In addition, in the last decade much work
been devoted to the study of the statistical features of ta
nomic trees, in the hope that they could reveal some gen
patterns of organization. Interestingly, when looking at
statistical distribution of the sizes of subtrees~which corre-
spond to the sizes of subspecies within species of subc
munities within communities! an inverse square power-la
relation has been found@1–3#. Subtree sizes are best viewe
in Fig. 1, where we show a tree and label every node by
size of its corresponding subtree. It is worth noticing th
such scheme corresponds to the statistics of drainage b
area in the river network studies@4#. The presence of a powe
law in the size distribution of subtree sizes has been haile
a consequence of some self-organization~possibly critical!
of the system under consideration. Actually, and even m
interestingly, the robustness of such a law across diffe
taxa and kingdoms~in ecology! and for different social con-
texts and definitions of community~in social sciences! points
to some universal property of these systems.

Here we show that, although self-organization is sur
present in ecological and social systems, its presence is
revealed by the above mentioned inverse square rela
which instead is an unescapable consequence of the tre
nature of classification scheme. Moreover, the robustnes
the inverse square relation emerges simply as a unive
consequence of the tree-building algorithm.

Community detection within a society is not a simple a
perfectly defined task. Indeed, the definition itself of a co
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munity is not clear-cut, and even for a given definition t
procedure to identify communities might not be easy
implement. Quite recently Girvan and Newman~GN! have
proposed an algorithm that on test cases~where the commu-
nities are already known! seems to perform quite effectivel
@5#. The algorithm relies on a simple intuition: communitie
are groups of individuals tightly connected with each oth
and less connected to the rest of the social network. Th
fore, by identifying a suitable parameter that quantifies su
degree of connectedness, it is possible to devise a proce
to fragment the social network in communities. GN use
edge betweenness@6# index to estimate how much an edge
the network is important to keep it connected: in gene
edges within a community have a low betweenness va
since the global connectivity is anyway ensured by the la
amount of edges linking individuals in the community. Edg
between two different communities, on the other ha
should exhibit high betweenness values, since there sh
be a few of them, sustaining all the social relations betwe
the two communities. The GN algorithm recursively prun
the network by cutting the edge with the largest betweenn
checking whether the network has split in two fragmen
and repeating the procedure until the network is made
disconnected nodes. Any time there is a splitting, the ta
nomic tree of communities is updated: the community t
has split into two subcommunities gives rise to two o
springs. The algorithm therefore builds a binary tree t

FIG. 1. Binary tree with nodes labeled by their subtree sizes.
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encodes the community structure of the social network. M
recently, other algorithms@3,7# have been proposed that ru
faster than the GN one by relying on local quantities, such
the edge clustering~the computation of the betweenness
costly since it is a global quantity!. Yet, the common feature
is that the algorithm still produces binary taxonomic tre
As mentioned above, all these algorithms correctly iden
communities in selected test cases, and all exhibit an inv
square-law behavior in the community size distributio
sometimes used as evidence of a self-organized hierarc
structure in the system. Yet, the structure, encoded in a ta
nomic tree, is hierarchical by construction, and also the
verse square power behavior is an inescapable outcom
the construction.

It has been analytically shown recently that the subt
size distribution~the community size distribution in the so
cial context! of a random tree is always power-law distri
uted, P(s);s2g, with the exponentg that can be equal to
3/2 in the case of critical random trees@8# ~a critical random
tree is a tree where nodes have, on the average, just a s
offspring!, and 2 in the more common case of supercriti
trees~the average number of offsprings is larger than o!
@9#. To check whether this result applies in general to
detection algorithm, we have applied the one based on
edge clustering coefficient to a simple Erdos-Renyi netw
made of 3000 nodes and with an average degree equal to
As shown in Fig. 2, the community size distribution sho
an inverse power-law behavior for almost two decades.
the network is completely random, and there is no s
organization whatsoever in the communities identified by
algorithm. The application of the betweenness based GN
gorithm gives similar results~data not shown!. In Fig. 2 we
have logarithmically binned the data: this is helpful to im
prove the quality of the plot, although not essential to rev
the power law in the community size distribution~the non-
binned data are just slightly noisier!. The cumulated distri-
bution, instead, would not have shown any of these featu
as Fig. 2 clearly shows: this is acaveatin the use of cumu-
lated distributions, that can sometimes heavily distort the

FIG. 2. Community size distribution for an Erdos-Renyi ne
work of 3000 nodes and with average degree equal to 10.
straight line iss22.
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sults, to the point that by their use the universality of t
inverse square power relation could have been missed.

The robustness of the result is emphasized by the fact
we have found the same distribution of ‘‘communities
characterized by an inverse square behavior, also on sc
free networks generated with various other models@10,11#.

The inverse square-law behavior also emerges from
data and from sets of real data after some randomization
an example we examine data from plant taxonomy, which
a particular case of biological classification. We have cons
ered a number of plants ecosystems belonging to diffe
climatic and geographical environments around the wo
each one represented by the taxonomic classification t
For all these trees the study of the statistical distribution
the sizes of subtrees shows a very good inverse power
distribution with an exponentg;1.960.2. As all the plants
species in each tree belong to a same ecosystem, this r
could be viewed as a sign of some self-organization of
ecosystem itself. Yet, in this case a simple experiment sh
that community statistics do not reveal any structure~al-
though the details of the community partition do!. We have
studied two different kinds of subsets of the above ecos
tems: geographical subsets made of groups of species
live together in a restricted area@12# and give rise to a smal
ecosystem, and some other completely random subsets.
statistical distribution of the sizes of subtrees shows an
verse square power-law behavior for both kinds of subs
~see Fig. 3!. Finding this behavior both in homogeneous da
from the same ecosystem, and in a random subsets of sp
where no correlations are present, shows once more tha
inverse square law is simply a consequence of the tree
nature of the taxonomic classification. It is worth observin
in this case, that Fig. 3 shows the cumulated distributi
which in this case preserves its power-law features~this is
further evidence that, if the cumulated distribution is a pow
law then the original is power law too, whereas the invers
not necessarily true, for example, if data are quite noisy!.

In conclusion we have shown that the presence of an
verse square-law relation for the distribution of the sizes

e

FIG. 3. Cumulated community size distribution for the flora
Lazio and a random subset of Italian species. The straight lin
s21 since these are cumulated distributions. Inset: the noncu
lated distributions~axis label as in the main panel!.
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communities and species does not mark any significative
ganization within the system under consideration, but rat
it is an inevitable consequence of the classification sche
More generally we point out that such power-law behav
should be expected whenever the classification scheme
to organize a set of data is based on the construction
hierarchical tree. This should also apply to classical t
onomy, where the appearance of power laws in the distr
tions of subspecies within species has been linked to s
intrinsic fractality in the way species are organized. The
gree of correlation and organization of the system un
study should be instead tied to the quality of the scal
a
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rather than to its bare presence. These subtle relations ar
to be discovered. In some cases, the community size di
bution has shown power-law scaling with exponent 3
rather than 2@13#: since it is known that the only ingredien
necessary to find such a scaling for random trees is t
criticality ~number of offsprings equal to 1), we specula
that it is not the presence of scaling itself that points to so
peculiarities in these systems, but rather the specific valu
the exponent~and we stress that no other exponents differ
from 2 and 3/2 could be found!.
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