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Modeling the evolution of weighted networks
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We present a general model for the growth of weighted networks in which the structural growth is coupled
with the edges’ weight dynamical evolution. The model is based on a simple weight-driven dynamics and a
weights’ reinforcement mechanism coupled to the local network growth. That coupling can be generalized in
order to include the effect of additional randomness and nonlinearities which can be present in real-world
networks. The model generates weighted graphs exhibiting the statistical properties observed in several real-
world systems. In particular, the model yields a nontrivial time evolution of vertices’ properties and scale-free
behavior with exponents depending on the microscopic parameters characterizing the coupling rules. Very
interestingly, the generated graphs spontaneously achieve a complex hierarchical architecture characterized by
clustering and connectivity correlations varying as a function of the vertices’ degree.
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I. INTRODUCTION bolic networks, as shown ifiL5]. Finally, sociologistg16]
Networked structures appear in a wide array of systemShowed already some time ago the importance of weak links
belonging to domains as diverse as biology, ecology, socidl! SOCial ne_tworlgshVery mterekstlrrl]gly, the anlalysE of some
sciences, or large information infrastructures such as the f2aradigmatic weighted networks have revealed that in addi-
ternet and the World Wide Wei—4]. In recent years, many tion to a complex topolo_glcal structure, real n_etwork_s display
empirical findings have uncovered the general occurrence ¢t 1argé heterogeneity in the capacity and intensity of the
a complex topological organization underlying many of theséeonnections. In particular, broad distributions and nontrivial

networks, triggering the interest of the research communitySO/relations between weights and topology were observed in

: . different networkg11,12,17.
In particular, small-world propertiefs] and large fluctua- SLest e o
tions in the connectivity pattern identifying the class of From the previous discussion, it appears clearly that there

scale-free networkgl] have been repeatedly observed in is a need for a modeling approach to complex networks that

e . oes beyond the purely topological point. In this paper, we
real-world networks. These findings triggered a wealth Ofegmalyze ym detailpa gﬁne?al r?lodelpfor the evorl)utliaon of

t_heoretical and e_mpirical studies devoted to the char_acterizz%\-,eighted networks that couples the topology and weights
tion and modeling of these features. These studies havgnamical evolution. Vertices entering the system draw new
pointed out the importance of the evolution and growth ofgqges with an attachment dynamics driven by the weight
networks[3,4,6 and led to the formulation of a long list of properties of existing edges and vertices. In addition, in con-
models aimed at studying the architecture of complex nettrast with previous model§18,19 for which weights are
works and the dynamical processes which are taking placetatically assigned, we allow for the dynamical evolution of
on their structurd¢7-10. weights during the growth of the system. This dynamics is
So far the research activity on networks has been mainlynspired by the evolution and reinforcements of interactions
focused on graphs in which links are represented as binary natural and infrastructure networks. We provide a detailed
states, i.e., either present or absent. More recently, howeveanalytical and numerical inspection of the model, consider-
the gathering of more complete data has allowed one to takiag different specific mechanisms—homogeneous, heteroge-
into account the variation of the strength of the connectionsieous, nonlinear—for the evolution of weigh¢# short re-
between nodesi.e., theweightsof the linkg, providing a  port of the simplest linear and homogeneous case appeared
more complete representation of some networked structurés Ref. [20].) The obtained networks display heavy-tailed
in terms of weighted graphs. Indeed, this diversity in thedistributions of weight, degree, and strength. We determine
interaction intensity is of crucial interest in real networks. analytically the exponents of the corresponding power laws
Studies of congestion phenomena on the Internet implies thehowing that they depend on the unique parameter defining
knowledge and the characterization of its trafl¢ and the the model's dynamics. Interestingly, the model generates
number of passengers in the airline networks is obvioushgraphs that spontaneously develop a structural organization
basic information to assess the importance of an airline corin which vertices with different degrees exhibit different lev-
nection[2,11,13. In the case of ecological network43], els of local clustering and correlations. These correlations
recent studiegsee[14] and references cited thergihigh-  can be shown to emerge as a direct consequence of the cou-
lighted the importance of the strength of the predator-preyling between topology and dynamics. While the model we
interaction in ecosystem stability. Metabolic reactions alsantroduce here is possibly the simplest one in the class of
carry fluxes that are essential to the understanding of metaveight-driven models, it generates a very rich phenomenol-
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ogy that captures many of the complex features emerging in k=>a. (1)
the analysis of real networks. In this perspective it can be ' i !
considered as a general starting point for more realistic mod-

complex weighted networks. The general formulation of the
model is reported in Sec. Ill. Section IV discusses the homo-
geneous reinforcement rules and reports the correspondigdeed, the strength of a node combines the information
analytical and numerical analysis. In Sec. V, the dynamics igibout its connectivity and the intensity of the weights of its
generalized in order to include the effect of local random-links. In the case of the worldwide airport network, the
ness. A further generalization to more complicated nonlineastrengths; corresponds to the total traffic going through a
reinforcement mechanisms for the weights’ evolution is dis-vertexi and is therefore an indication of the importance of
cussed and analyzed in Sec. VI. the airporti. In the case of the scientific collaboration net-
work, the strength gives the number of papers authored by a
given scientist(excluding single-author publications, see
Il. WEIGHTED NETWORKS e.g.,[12).
A natural characterization of the statistical properties of
The topological properties of a graph are fully encoded innetworks is provided by the probabili§§(k) that any given
its adjacency matrix;;, whose elements are 1 if a link con- vertex has a degrde Many studies have revealed that net-
nects node to nodej, and O otherwise. The indicésj run  works display a heavy tailed probability distributid®(k)
from 1 to N whereN is the size of the network and we use that in many cases is well approximated by a power-|aw
the conventiora; =0. Similarly, a weighted network is en- pehaviorP(k) ~ k™ with 2=<y=3. This has led to the intro-
tirely described by a matriXV whose entryw; gives the  dyction of the class of scale-free netwofk, as opposed to
weight on the edge connecting the verticeandj (@ndwj  the regular graphs with Poissonian degree distribution. Simi-
=0 if the nodes and] are not connectdin the following |5y information on the statistical properties of weighted net-
we will consider only the case of symmetric weight§  works can be gathered at first instance by the analysis of the
=w; while the directed case is considered 21]. strength and weight distributior(s) and P(w) which de-
Important examples of weighted networks have been repqe the probability of a vertex to have the strengtind of
cently characterized. The first example is the worldwide air4 |ink to have the weightv, respectively. Also for these
port network(WAN) [11,12,23 where the weighw; is the  gistributions, recent measurements on weighted networks
number of available seats on direct flight connections bepave uncovered the presence of heavy tails and power-law
tween the airports andj. A second important case study is pehaviorg[11,12,15,17,22,23 The heavy-tailed behavior of
the scientific collaboration netwo§CN) [24,29 where the  {hese distributions is an extremely relevant characteristic of
nodes are identified with authors and the weight depends oy mplex networks indicating the presence of statistical fluc-
the number of co-authored papgf,24. These two cases, yations diverging with the graph size. This implies that the
which are paradigms of, respectively, large infrastructure a”%verage valuetk), (w), and(s) are not typical in the network

social networks, display complex features characterized by, ihere is an appreciable probability of finding vertices

heavy tailed distributions for topological and weighted quanith very high degree and strength. In other words, we are
tities. Another very important example of a weighted net- :

Kis the biochemical K of boli ; F generally facing networks which are very heterogeneous. It
work is the biochemical network of metabolic reactions. Forig \yorih stressing that the correlations between the weight
this network, the nodes are biochemical eleméatszymes,

. / nd topological properties are encoded in the statistical rela-
etc) af“?' a link betyveen two nodes denotes the existence 6fons among these quantities. Indegdwhich is a sum over
an individual chemical reaction between them. The weight o Il neighbors ofi, is correlated with its degrek. In the

. . . . ’ (N
a link can be characterized by the qu_x of this c_hemlcal re.ac'simplest case of random, uncorrelated weighfswith aver-
tion. A very recent study15] has prov ided the f'rSt_ an_aly5|s age(w), the strength is~ (w)k. In the presence of correla-
of the weighted graph of a metabolic network, bringing fur- . .

. tpns between weights and topology, we may observe a more
the.r evidence for the heterogeneous complex aspect Ocomplicated behavior witls~ Ak with 8#1 or with 8=1
weighted networks. and A+ (w)

In the following we introduce a set of general quantities '
whose statistical analysis allows the mathematical character-
ization of the complex and heterogeneous nature of a B. Clustering and correlations

weighted graph. Complex networks display an architecture imposed by the
structural and administrative organization of these systems
that is not fully characterized by the distributioR$k) and
P(s). Indeed, the structural organization of complex net-
The most commonly used topological information aboutworks is mathematically encoded in the various correlations
vertices is their degree and is defined as the nunkpef  existing among the properties of different vertices. For this
neighbors reason, a set of topological and weighted quantities are cus-

els aimed at the representation of specific networks. A natural generalization in the case of weighted networks is
The paper is structured as follows. In Sec. Il we reviewthestrength sdefined a§12,18
the necessary definitions and tools for the characterization of _
$=2 Wij - (2
j

A. Weights and strength
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tomarily studied in order to uncover the network architec-
ture. A first and widely used quantity is given by ttlester-
ing of vertices. The clustering of a vertéxs defined as

1 E k=5 ; s=
Ci= < &jdndj )
' kiki—1) ih S
and measures the local cohesiveness of the network in the ¢_os =025 K =18 B =32
nn nn

neighborhood of the vertex. Indeed, it yields the fraction of
interconnected neighbors of a given vertex. The average over
all vertices gives the networtlustering coefficient Qvhich
describes the statistics of the density of connected triples.
Further information can be gathered by inspecting the aver- Y —_— wss ~
age clustering coefficien®(k) restricted to classes of verti- :
ces with degre&c .

k=4 ; s=16

__ 1 c=05 =062 K =18 K =12
Cl= 5 W amzi:kc" (4) o

. ~ FIG. 1. Examples of local configurations whose topological and
In many ngtworks, the.degree-(.jependen_t clustering Coeffkiveighted quantities are different. Top: In both cases the central
cient C(k) is a decreasing function d€ which shows that yertex(filled) has a very strong link with only one of its neighbors.
low-degree nodes generically belong to well interconnecte@ottom: opposite situation. The weighted clustering and the
communities while high-degree sites are linked to manyweighted average nearest-neighbors degdredues in the figure
nodes that may belong to different groups which are notorrespond to the central verjegapture more precisely than their
directly connected26,27. This is generally the signature of topological counterparts the effective level of cohesiveness and af-
a nontrivial architecture in which hubs, high degree verticesfinity due to the actual interaction intensity as measured by the
play a distinct role in the network. weights.

Another important source of information lies in the corre-

lations of the degree of neighboring vertide8,29. Since  and correlations measurements to weighted networks have
the whole conditional distributiofP(k’ |k) that a given site  peen put forward if12].
with degreek is connected to another site of degideis The weighted clustering coefficienf a vertex is defined
often difficult to interpret, theaverage nearest-neighbor de- as[12]
greehas been proposed to measure these correlafit8js

18 Ci
knn,i = EE aijkj- (5) S(kl - 1) jh 2
= This quantity combines the measure of the existence of
Once averaged over classes of vertices with connectivity triples around vertek with the intensity of the links emanat-
the average nearest-neighbor degree can be expressed asing fromi and participating to these triples. As we show in
_ RPN Fig. 1, ¢’ describes more accurately therthe relevance of
Knr(k) = 2 k'PK[k), 6) these triples. The normalizatias(k,—1) corresponds to the
: maximum possible value of the numerator and thus ensures
providing a probe on the degree correlation function. If de-thatc}’ € [0, 1]. The average over all sites, or over sites of a
grees of neighboring vertices are uncorrelatedk’ |k) is  given degreek, define, respectively, the global weighted
only a function ofk’ and thusk,,(k) is a constant. When clustering coefficient€" andC%(k). For random or uniform
correlations are present, two main classes of possible correveights, these averages coincide with their geometrical
lations have been identifiedissortativebehavior if k,,(k) counterparts. On the other hand, the comparison betWeen
increases withk, which indicates that large degree verticesandC" [and also betwee@(k) andC"(k)] conveys informa-
are preferentially connected with other large degree verticegion on the repartition of weights. A larger weighted cluster-
anddisassortativef k,,(k) decreases with [30]. ing C"> C signals that links with large weights have a ten-
While the above quantities provide clear signatures of thelency to form triples while the opposite caS&< C signals
structural organization, they are defined solely on topologica& lower relevance of the triangles.
grounds and the inclusion of weights and their correlations Analogously, high degree vertices could be connected
might be extremely important for a full understanding of themainly to small degree vertices with a small intensity of
networks’ architecture. For instance, Fig. 1 clearly showsconnections and to a few large degree vertices with large
that very different situations in terms of weights can have theveights: a topological disassortative character is therefore
same topological clustering: if the existing triples are formedemerging while in terms of interactions one would conclude
by links with small weights, thégeometrical clustering co- to an assortative behavior. In the same spirit as for the clus-
efficient will overestimate their relevance in the network'stering, one can therefore define theeighted average
organization. For this reason, generalizations of clusteringiearest-neighbor degress[12]

1 (Wij + Wip)
L > L & Qin Q- (7)
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Kani = ggl WijiK;. (8

This quantity is the natural generalization of the usual assor-
tativity ky,; and balances the nearest-neighbor degree with
the normalized weight of the connecting edgg/s;. It re-
duces tok,,; for uniform or random weights. Comparing
oni With kyn; informs us if the larger weights point to the
neighbors with larger degre@ k), >kp,;) or on the con-

nn,i

trary to the ones with smaller degresee Fig. 1. The behav- FIG. 2. lllustration of the construction rule. A new nodeon-
ior of ki (k) thus measures the effectivafinity to connect nects to a node with probability proportional tos/=;s;. The
with high or low degree neighbors according to the magniweight of the new edge iw/,, and the total weight on the existing
tude of the actual interactions. edges connected iois modified by an amount equal #).

In the following we will make use of all these quantities

in _order to provide a thorough characterization of the|pq rule, of strength driven attachmengeneralizes the
weighted graphs generated by our model and to assess t{je 5| preferential attachment mechanism driven by the topol-
relevance of the weights in their structural organization. ogy, to weighted networks. Here, new vertices connect more
likely to vertices which are more central in terms of the
Ill. THE MODEL strepgth c_)f interaction.s. _ .
(i) Weights’ dynamicsThe weight of each new eddp, i)
Previous models of weighted growing networlks8,19 s initially set to a given valuev,. The creation of this edge
were considering the growth as driven by the topologicalwill introduce variations of the traffic across the network.
features only, with weights statically assigned to the links;For the sake of simplicity we limit ourselves to the case
i.e., w;; is chosen at the creation of the lin§ and does not where the introduction of a new edge on nadsaill trigger
evolve afterwards. This mechanism leads to topological hetenly local rearrangements of weights on the existing neigh-
erogeneities, however, it lacks any dynamical feature of th@orsj e V(i), according to the rule
network’s weights. Indeed, it is rather intuitive to consider
that the addition of new vertices and links will perturb, at Wi — Wi + Awj, (10)
least locally, the existing weights. This phenomenon can be
easily understood by considering the example of the airlingyhere in generalAw; depends on the local dynamics and
network: a new airline connection arriving at airport A will can be a function of different parameters such as the weight
generally modify(increasg the traffic activity between air- w;, the connectivity or the strength ofetc. In the following
port A and its neighboring airports. Passengers brought bye focus on the case where the addition of a new edge with
the new connection will eventually get on connection flights,weight w, induces a total increasé of the total outgoing
increasing the passenger flow on the other routes. In the Inraffic and where this perturbation is proportionally distrib-

ternet as well, it is easy to realize that the introduction of ayted among the edges according to their weigsée® Fig. 2
new connection to a router corresponds to an increase in the

traffic handled on the other router’s links. Indeed in many Wi
technological, large infrastructure and social networks we are Aw; =5t (11
generally led to think about a reinforcement of the weights S
due to the network’s growth. In this spirit we consider here ar

model for a growing weighted network that takes into ac—+W0' implying that s — s + 3 +Wwp. After the weights have

C;gn;:zjeIgg\u/gge?o%\a?llfJ(t)'rC)gggot'r?rioocj;ggog?%efggtV:ﬁé%ﬁ:peen updated, the growth process is iterated by introducing a
[. ] . . ting new vertex, i.e., going back to st¢p until the desired size
nisms for the reinforcement of interactions. of the network is reached

The definition of the model is based on two coupled i

X i ) : . The mechanismgi) and (ii) have simple physical and
g]yic;r;ﬂ:ms' the topological growth and the We'ghtsrealistic interpretations. Equatia®) corresponds to the fact

i\ Growth Starting from an initial seed ol vertices that new sites try to connect to existing vertices with the
() : 9 : . 0 largest strength. This is a plausible mechanism in many real-
connected by links with assigned weighg, a new vertexn

is added at each time step. This new site is connected to world networks. For instance, in the Internet new routers
. e >Lep. ) connect to routers that have larger bandwidth and traffic han-
previously existing verticed.e., each new vertex will have

initially exactly m edges, all with equal weighty), choosing dling capabilities. In the case of the airport’s networks, new

preferentially sites with large strength; i.e., a nodechosen connections are generally established to airpo_rts with a Iarge
according to the probability A passenger traffic. In contrast to the connectivity preferential

attachment of the “rich get richer” type, the mechanism here

s relies on the importance of the traffic and could be more

Hpi= o —- (9)  adequately described as “busy get busier.” At the same time,
Ej S the weights’ dynamics Eqg10) and (11) couples the addi-

his rule yields a total strength increase for nddef &
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tion of new edges and vertices with the evolution of weightto be connected ta. Then the connectivity of is not modi-

and strength and corresponds to different scenarios accordirigd butw; is increased according to the rule Eg0), and

to the value ofs,. thuss; is increased byw;;/s;. This dynamical process modu-
(1) For & <wy, the new link does not have a large influ- lated by the respective occurrence probabiliggh /s (t)

ence. This may be the case for scientific collaborations wherands;(t)/Zs/(t) is thus described by the following evolution

the birth of a new collaboratiofto-authorshipis very likely  equations fois andk::

not going to strengthen the activity on previous collabora-

tions. ds s(t) st w1
2) &~w, corresponds to situations for which the new =m——(1+d+ X m 5 :
( ) i 0 p dt El Sl(t) eV EI S|(t) S](t)

created traffiqlon the new linkn-i) is transferred onto the
already existing connections in a “conservative” way.

(3) &>wyis an extreme case in which a new edge gen- d
erates a sort of multiplicative effect that is bursting the _k":m S(0 , (12)
weight or traffic on neighbors. dt El (1)

We have considered only the case of a reinforcement
mechanism, i.e.5 > 0. In certain particular cases, like, €.g., where we have considered the continuous approximation that
a network of power distribution, the addition of a new link {a5tg k, s, and the timet, as continuous variablegl,3.
could in factdecreasethe traffic of other links. This would These equations may be written in a more compact form by
correspond to possibly negativgand would imply the defi- qicing that the addition of a node results in the addition of
nition of more complicated rules to ensure positivity of traf- ., jinks obtaining that the total degree at tirhés given by
fic. We will not consider these cases in this paper, leavingst_ . (t)~2mt Similarly, each added link increases the total
them for futu_re investigations. . strength by an amount equal to 282so that=_;s(t)

The quantityw, sets the scale of the weights and we can__ 2m(1+)t. By plugging this result into the equatiof®2),

therefore use the rescaled quantitieg/w,, s/wp and . . . : o "
i _ and integrating the resulting equations with initial conditions
81w, or equivalently setvy=1. The model then depends k(t=i)=s(t=i)=m, we obtain

only on the dimensionless paramei®r The generalization

to arbitraryw, is simply obtained by replacing, w;;, ands;,

respectively, bys /wp, wij/Wp, ands/wg in all results. s(t) = m(
The model is very general and the properties obtained for

the generated networks will strongly depend on the kind of

coupling between topology and weights as specified by thdhe strength and degree of vertices are thus related by the

paramete®; and its variations depending on the vertex’ prop-following expression

erties. In the following we will provide analytical and nu-

merical inspections of three prototypical situations that can s =(26+ 1)k —2ms (14)

be used as starting points for further generalizations.

_s(t) +2més

k=0 (1

t)(25+1)/(25+2)
i

that implies for large degree a proportionality between
strength and degree. It is worth noticing, however, that this
IV. HOMOGENEOUS COUPLING relation indicates the existence of correlations that are not
In this section, we will focus on the simplest form of present in t_he case of randomly assigned \(ve_ights. Indeed, at
coupling with & = 5=const. This case amounts to a very ho-€ach new link created the sum of we[ghts is mcrgmented by
mogeneous system in which all the vertices have an identicai+é and thereforgw)=1+45. As previously mentioned, a
coupling between the addition of new edges and the corré@ndom assignment of weights would then leadstek;(1
sponding weights’ increase. Such a growing model can be d). Equation(14) instead reveals a different proportionality
analytically studied through the time evolution of tager-  factor signaling correlations between the two quantities. The
agevalue ofs(t) andk;(t) of theith vertex at timd, neglect-  proportionality relations~k also indicates that the weight-
ing fluctuations and thus working at a “mean-field” level. In driven dynamics generates in E() an effective degree
addition, we use numerical simulations in order to provide aPreferential attachment. This model thus displays a micro-
direct statistical analysis of the generated graph and substafcopic mechanism accounting for the presence of the prefer-
tiate the analytical findings. ential attachment dynamics in growing networks.
In order to check the analytical predictions we performed
_ _ numerical simulations of networks generated by using the
A. Evolution of strength and weights present model with different values 6f minimum degreen
The network growth starts from an initial seed Nf  and varying network siz&l. The analytically predicted be-
nodes and continues with the addition of one node per unifavior is recoveredsee[20]).
time, until a sizeN is reached. When a new vertaxs added The time evolution of the weighte;; can also be com-
to the network, an already present vertean be affected in puted analytically along the lines used for the studys(t
two ways: (i) It is chosen with probability9) to be con- andk(t). Indeedw; evolves each time a new node connects
nected ton; then its connectivity increases by 1, and itsto eitheri or j and the corresponding evolution equation can
strength by 1. (i) One of its neighbor$ € V(i) is chosen  be written as
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10° min(lh) — 10°

FIG. 3. Top: Time evolution ofx; during the growth of the
network, for different values o08. The functional behavior is con-

sistent with the predicted power la®, b=5/(1+6), shown as
dashed lines. Data are averaged over 200 networksmitB and

N=10% Bottom:w;; vs min(k;,kj); the dashed lines are the theoret-

ical predictiongm=8, N=10", data averaged over 1000 samples

dw; S Wi S W 5w
—=m——sHL+m=t—s"t=——-"1 (15
dt 2|54 S E|S‘ s 1+t

The link (i, ]) is created atj=max(i, j) with initial condition
Wij(tij)zl, so that
A(CE
w;j(t) = (t—> (16)
ij
At fixed time t, this result implies that w(t)
~min(i,j)?*Y, and sincek;(t) ~i~(22*1/(25+2) e obtain

Wij -~ min(ki,kj)25/(25+l). (17)

In this case also, the numerical simulations of the mode

PHYSICAL REVIEW E70, 066149(2004

FIG. 4. Top: Probability distributiorP(s). Data are consistent
with a power-law behavios™. Bottom: Probability distribution of
the weightsP(w) ~w™. In the insets we report the value of
obtained by data fittingfilled circles and the analytic expressions
v=(3+45)/(1+268) anda=2+1/5 (solid liney. The data are aver-
aged over 200 networks of si2é=1CP.

_45+3
T 25+1°

Y (19
Since s and k are proportional, the same behaviB(s)
~s77 is obtained for the strength distributioR(s) is dis-
played in Fig. 4, showing that the obtained graph is a scale-
free network both for topology and strength and described by
an exponenty e [2, 3] that depends on the value of the pa-
rameterd. As expected, if the addition of a new edge does
not affect the existing weight§6=0), we recover the
Barabasi-AlbertBA) model [6] with the valuey=3. As &
increases, the distributions get broader wijth-2 when &
—o, i.e., in a range of values usually observed in the em-
pirical analysis of networked structuré$,3,4]. This result
could be an explanation of the lack in real-world networks of
any universality of the degree distribution exponent. Our

reproduce the behaviors predicted by the analytical calculdNde! indeed predicts that all the exponents will be nonuni-
tions. The time evolution of some randomly chosen weight&/€rSal and depend on the local processes which take place at

is displayed in Fig. 3 and compared with the prediction o

Eq. (16). Figure 3 also show the validity of E¢l7) for the
correlation betweem; and the connectivities afandj.

B. Probability distributions

gnodes receiving new links.

The weight distributionP(w) can be analogously calcu-
lated yielding the power-law behavior
P(w) ~w™,

1
=2+, 20
a 5 (20)

The knowledge of the time evolution of the various quan-The distributionP(w) therefore is even more sensitive to the
tities allows us to compute their statistical properties. Indeedparameters and evolves from a delta function f@=0 (no
the timet;=i at which the node enters the network is uni- evolution of the weightsto a very broad power law a8
formly distributed in[0,t] and the degree probability distri- — . The values=1 corresponds ta=3, i.e., to the bound-

bution can be written as

P(k,t) = : L (19

t

ok = k;(1)dt;,
o JO (k= k(®)d
where §(x) is the Dirac delta function. Using equatidqit)
~(t/i)® obtained from Eq(13) one obtains in the infinite
size limitt— oo the distributionP(k) ~ k™ with y=1+1/a:

ary between finite and unbounded fluctuations of the
weights. In Fig. 4, the weight distributions obtained from
numerical simulations at different values of the paraméter
are reported along with the comparison between the values
of the measured exponent and the analytical prediction.
The precise microscopic dynamics ruling the network’s
growth and the rearrangement of weights is therefore very
relevant to the final distribution of weights, even if it affects
only in a much milder way degree and strength.
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evolution ofk,,(k) for increasings. ous 4.

C. Correlations and clustering that have weights larger than the average value found in the

The previous analytical study of the model does not pro-network.
vide information on the correlations generated by the grow- Interestingly, correlations and clustering spectrum can be
ing process. In order to have a direct inspection of thesegualitatively understood by considering the dynamical pro-
properties we therefore consider the graphs generated by thess leading to the formation of the network. Indeed, vertices
model for different values of, m and N and measure the with large connectivities and strengths are the ones that en-
quantities defined in Sec. Il that characterize the clusteringered the system at the early times as shown by (E8).
and correlation properties. Newly arriving vertices attach to preexisting vertices with

The model exhibits also in this case properties which ardarge strength which on their turn are reinforced by the rear-
depending on the basic paramei@r More precisely, for rangement of the weights. This process naturally builds up a
small 8, the average nearest-neighbor dedtggk) is quite  hierarchy among the nodes: “old” vertices have neighbors
flat as in the BA model. The disassortative character emergehat are more likely to be “young,” i.e., with small connec-
as ¢ increases and gives rise to a power-law behavior ofivity. On the contrary, newly arriving vertices have neigh-
kan(K) as shown in Fig. §31]. Remarkably, the weighted bors with high degree and strength, generally leading to a
average nearest-neighbor degree displays for &rgy flat ~ disassortative behavior. This effect gets strongersas-
behavior. We note that, in some recently studied weighted¢reases and(k) broadens leading to disassortative proper-
real-world networkg12], topological and weightek,, show ties. As well, edges among “old” vertices are the ones that
a clear assortative behavior, opposite to what we find in thgets more reinforced by the weights dynamics indicating that
present model. In other cases such as the Internet and tliee edges between older nodes, with large connectivities, will
World Wide Web, a disassortative behavior is instead foundbe typically stronger than the average. This means that the
consistently with our results. Assortative behavior may beweighted assortativity will be larger than the topological as-
originated in the community structure and geographical assortativity, leading tdk/,(k) > k,(k), especially for largex.
pects intrinsic to the SCN and WAN, which are not consid-  Similarly, the increase of with §is also directly related
ered in our mode{inclusion of geography, i.e., space, in the to the mechanism which rearranges the weights after the ad-
model is considered if32]). Remarkably, however, our dition of a new edge. Since vertices with large strength and
model reproduces the important feature that the weightedegree are generally connected among them, a new vertex
assortativityk)(k) is significantly larger thark,,(k), as in  has more probability to attach to the extremities of a given
real networks(see Fig. ¥ the larger weights contribute to edge. Triangles will typically be made of two “old” nodes
the links towards vertices with larger connectivities. and a “young” one. Therefor€C(k) increases faster for

Analogous properties are obtained for the clustering spectyounger” (low degre¢ nodes whers increases generating
trum. At small 5, the clustering coefficient of the network is the observed spectrum. On the other hand, the edges between
small andC(K) is flat. As § increases, however, the global “old” and “young” vertices are the most recent ones and do
clustering coefficient increases a@i¢k) becomes a decreas- not have large weights. This feature implies that for low
ing power law similar to real networks dafa3]. Figure 6 degree vertices; and ¢’ are rather close. In contrast, high
clearly shows that the increase in clustering is determined byglegree vertices are connected to each other by edges with
small k vertices. The weighted clusterif@" also increases large weights, leading to a weighted clustering coefficient
and is larger than the topologicél, with an essentially flat larger than the topological one.
C"(k). Especially at largd, it is clear that the usual cluster- These qualitative arguments confirm the importance of
ing coefficient underestimates the importance of triples in theonsidering weighted correlations since topological correla-
network since, for the hubs, the edges with the highestions do not fully reveal the intrinsic coupling between to-
weights belong in great part to the interconnected triples. Irpology and weights that may lead to very different behavior
other words, interconnected vertices are joined by edgesf the correlation and clustering spectrum.
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V. HETEROGENEOUS COUPLING t

((t) = 2m(1 + &')t. 24
In the model described in the previous section as well as z S ( ) 249

in most models of growing networks, connectivities and ) ] o
strengths of different vertices grow with the same exponentVe assume thaé’ is a well-defined constant, which is cer-
[see Eq(13)]. Therefore vertices entering the system at thef@inly the case if(d) is bounded. It is worth remarking that
early times have always the largest connectivities and® # (d) since during the growth process, vertices with larger
strengths. One can, however, imagine that a newly arrivingi Will be preferentially chosen. The quantity will be de-
vertex has intrinsic properties which make it more attractivetermined self-consistently by the general solution.

than older ones so that its connectivity and strength could We use Eq.(24) in the evolution Egs(23) and since
grow faster than its predecessors. This feature is certainlgjcyiWijJ; iS a sum over the neighbors pfhat are chosen
very important in many real systems where individuals areby the strength driven dynamjose assume thag = ¢’ and
not identical and has been put forward in the so-called fitnesthereforeX; . ,,;W;; 5= &'s;. We then obtain

model [34] (see alsd35] for a static definition of a fitness

mode). In a very similar spirit, we introduce here a node- ds _ Mit)

dependents, implying that the perturbation of weights cre- dt 28'+2 t

ated by any new edge attached to the nbdall depend on

the very local properties df This amounts to introducing a dk, s(t)

general heterogeneity in the dynamical properties of the ele- dt = m (25

ments of the system.
In this case, each vertex entering the system is taggedhe integration of these equations with the initial conditions
with its own & that we will assume are independent randomk;(t=i)=s;(t=i)=m yields

variables taken from a given distributigiid) characterizing &
the system’s heterogeneity. The preferential attachriteet s(t) = m(,—) , (26)
(9)] is not modified and the redistribution of weights now
reads
() +m(&5+ 6
ki(t) = M (27)

Wii v
Aw; = 5, (21) a+o+1

S The strength and degree of the vertices therefore grow as
power laws, with an exponent that depends on their ability to

A large val f not f i iately th ive- L .
arge value ofs; does not favor immediately the attractive redistribute weights:

ness of the vertex but the addition of a new link tmodifies
its total strength by a large amount, 1+5+6

&= 21+8)

Nodes arriving later but having larg® will thus grow faster
In the long run, large®, yield therefore larger increasés and overcome older nodes with small@wvalues. Equation
wheni is chosen for the addition of a new edge. Since thg27) also shows that also in the heterogeneous model the
model’s dynamics is driven by a strength driven attachmenstrength and connectivity are proportional for large degree,
the vertices with larges; will be progressively favored in the with a coefficient depending o4,
establishment of new connections, therefore achieving a _ , ,
faster degree and strength growth as time goes by. §=k(l+4+5)-m(g+J). (29)
Similarly to the homogeneous model of the previous secThe knowledge of the time behavior sft) makes it pos-
tion, the evolution equations of andk; can be written as  sible to obtain the probability distribution of connectivities
and strengths. For example, the distribution of strengths can

(28
S —S+Wy+ 6. (22

d t (T (T i
a8 _ s(1) 1+8)+ S m s(t) 5,-W'(), be written as
dt > s o X, s S 1 [
Py(s,t) = | ddp(d) ds-s(t)dt, (30
t+NoJg
dk -m si(t) (23) where §(s-s(t)) is the Dirac delta functiorinot to be con-
dt > S(t), fused with the heterogeneity parameterSince s(t)
' o (/)29 we obtain
where now the explicit dependence from the spedffiof p(5) [ 1\Yao+1
each vertex is properly considered. For each newly added P(s) fd % S ) (31)

edge from the vertex to the existing vertex, ;s is in-

creased by 2+&. On the average it is therefore natural to which shows that the precise form Bfs) depends om(6).
consider that the total strength is increasing linearly withFinally, the proportionality ofk, and s; ensures that their
time as distributions have the same form.
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Along the same lines we can obtain the dynamical evolu- 10°F —— T
tion of the weights. Indeedy; grows each time a new node '

connects to eitherr or j, its evolution equation being

M - S 5_l + _1_5 m M_J
(32
This readily implies thatv;j(t) «t°i with
5+
= 33
i 2(1+6) (33
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The behavior of the model depends explicitly on the value  FiG. 7. Model with randoms;: evolution ofs/m for a given
¢’ that has to be self-consistently determined. The consisnodei with various values of its redistribution parameterm=2,

tency of the solution is obtained using E¢86)—28) which
give

¢ t t a(o) t—
glsq(t)%fdép((‘)‘)Jl dtom(E) —mfdép(5)l_a(5),
(34)

ta( 5)

with a(8)=(1+46+68")/[2(1+6)]. Sinces, cannot grow faster
thant, a(é) has to be less than 1 and using Eg4), we
obtain from Eq.(34) in the large time limit

" dép(o)
2m(1+5)—mf—1+5+5, (35)
T 2(1+8)
or
f d&p,(b‘) -1 (36
1+6 -6

which determines the value @f. Finally, we note that these
results are valid only if the quantit§ is bounded: if it is not
the case, the basic assumption tBeg grows linearly is no
longer true[34].

It is clear from the above solution that the graph’s prop-
erties will depend upon the particular form of the coupling
distribution p(8). In order to compare with numerical simu-
lations of the model we analyze the specific case of a uni-

form distributionp(d) in the interval betwee,,, and Say
The equation for®’ can be explicitly solved, obtaining
5 = ( max 1)eXF(5max min) +1- 5min
eXPSmax~ Omin) ~ 1

(37)

We are therefore in the position to provide an explicit value

of the exponent(s) for the evolution ofs andk during the

growth of the network. Similarly, the strength probability

distribution can be written as

P(s) f ama*@(@)“”a
a\s '

@min

(38)

whose behavior at largeis

N=10% average over 1000 networks with the same realization of
6;€[0;2] (j#i). The dashed lines correspond to the predicted
power laws(t/i)a(),

1
st*1lRmax|og(s)’

where apa=(1+ 8.+ 6')/[2(1+8")] is the largest possible
value of the exponerd(?).

A test of the analytical results is obtained by the direct
inspection of networks obtained by numerical simulations
of the model in the case of heterogenous coupling. In par-
ticular we consider networks generated by uniform distri-
bution of the coupling constants in specific intervals as re-
ported in the figure captions. The striking agreement of the
analytical predictiondEqs. (26), (28), and (37)] with the
numerical results is shown in Figs. 7 and 8. In particular,
various curves cross in Fig. 8 since nodes arriving later may
have a larger ability to redistribute weights and thus over-
come older nodes in the long run. It is worth noticing the
remarkable agreement shown in these figures, obtained with-
out any free parameter. The statistical distributions of the
quantities of interest are also in good agreement with the

P(s) o (39)

> o + ¢ O

1

10
w

10°

FIG. 8. Model with randon®;: evolution ofs; for various nodes
(i=100,200,300,500,800m=2, N=10"* Symbols: results of nu-
merical simulations, average over 1000 networks with the same
realization of; [1;3]. Nodes arriving later can overcome older
nodes. Lines are the predictiq@6) with the exponent given by
Egs.(28) and(37).
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FIG. 9. Model with randomns;: distribution of strength®(s) for
uniform distributionsp(4), & €[0;1] and 6; € [0;4]. Dashed lines
are the theoretical predictioni89) s™1~max/|og(s). N=10°, m=2,
average over 1000 realizations.

FIG. 11. N=5000; s,=10" s vs k for a=0.2,0.4,0.6,0.8.
Dashed lines have slope 1.07, 1.21, 1.25, and {fi@4n bottom
to top). For values ofs larger thansy there is a crossover towards
B=1.

analytical prediction as shown in Fig. 9 for the strength dis- . : . N .
tribution. Finally, as shown in Fig. 10, the correlation andthe vertexi. We can, however, think of different situations in

clustering properties are nontrivial as well. As in the case o hich the perturbation depends on the centrality of the node

the homogeneous coupling the average nearest-neighbors 1{}5 measured by its strength or degree. In the airline network,

gree and the clustering coefficient have a clear structure wit or example, th's might mimic t_he fact th".’lt the airport Is
a hierarchical ordering of high and low degree vertiogs arger and the increase of traffic is larger with a much larger

only displayk,, and kfv:/n in Fig. 10 since the clustering prop- response to the creation of a new connection compared to a

erties are very similar to the ones displayed in Fig.As0 smaller airport. It is thus natural to investigate the conse-

in this situation the inclusion of weights in the characteriza—qu?rr;]%eS?rfnml)gshtnﬁi;I?I,?g;rl";%ljoms'Consists in considerin
tion of correlations provide additional information on the _Simplest piing : nsidering
that & is proportional tos,. In order to avoid unrealistic di-

structure of the network. While more cumbersome because .

. vergences a cutoff, is, however, needed to bound the cou-

of the heterogeneous nature of the coupling, a general underiin leading to the reinforcement rule
standing of the observed properties can be obtained along e 9

Wi s 10

Aw; =& Stann — || .

S So

reasoning reported for the homogeneous coupling model; in
all cases, the dynamical growth process itself is at the origin
of the complex architecture and structure of the generated

This relation simply expresses that the larger the traffic on
the vertex, the larger will be the traffic attracted to it during
the weights’ dynamics. The total changesirwhen a link is

networks.
; y a
In the previous sections we considered the coupling terpddded is nows sy tank(s/so)J°. For strength smaller than the

& as independent of the topological and weight properties of

(40)

VI. NONLINEAR COUPLING
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FIG. 10. m=2; top: kaa(k) andki,(k) for a uniform distribution
p(d) with & € [0;0.4]; bottom:ky(k) for uniform distributionsp(4)

in various intervalg Smin, Smax-

FIG. 12.N=5000;s5,=10" P(s) andP(k) for a=0.6,5=0.1. The
data for P(k) have been shifted vertically for clarity. Continuous
and dashed lines correspond to the power l&#%3 and 572,
respectively.
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: tering properties exhibit also in this case a nontrivial spec-
] trum as a function of the degré&every similar to the case of
linear coupling, as shown in Fig. 13, signaling the presence
3 of a hierarchical architecture also in the presence of a non-
3 linear coupling.

It is clear that the results obtained for nonlinear coupling
mechanisms are depending upon the detailed form of the
] coupling and further studies are needed in order to under-
3 stand the variations of time behavior and distribution expo-
] nents as a function of the various parameters defining the
reinforcement dynamics. Obviously, a detailed study of all

10* nonlinear coupling mechanisms is impossible and each mod-
eling effort must be driven by specific insights on the dynam-
ics of the real systems under examination.

FIG. 13. N=5000; s,=10*. Correlations and clustering fa
=0.6,5=0.1. Unweighted quantitig,,(k) andC(k)] are shown by
circles, weighted quantitiefk)) (k) and C¥(k)] by squares. VIIl. CONCLUSIONS

In this paper we have presented a general model of grow-
cutoff sy, this change grows as' and saturates tés) for  ing networks that considers the effect of the coupling be-
very large strengths. tween topology and weights’ dynamics. We investigated in

The nonlinear mechanism makes the analytical solutiorletails several coupling mechanisms including the effect of
very difficult to find and we rely on a numerical study of the randomness and nonlinearity in the redistribution process.
model to inspect its topological and weight properties. We The model produces graphs which display nontrivial com-
find that s(t) now grows faster thart, seemingly like plex and scale-free behavior that depend on the detailed cou-
exp(t®). Analogously, we observe that vertices’ degree andpling form. In particular, different quantities such as strength,
the strength grow faster than simple power laws. Very interdegree, and weights are distributed according to power laws
estingly, we observe that the strength grows as a power lawith exponents which are not universal and depend on the
with the connectivitys~k? with 8>1, as shown from the specific parameters that control the local microscopic
numerical simulations reported in Fig. 11. The expongnt weights’ dynamics. This result hints to a simple explanation
increases witha but it is independent fromd. This result  of the lack of any universality observed in real-world net-
raises the possibility that some real-world networks, in whichworks. In addition, the dynamics generates spontaneously a
a value3>1 is observed, are governed by local nonlinearnontrivial architecture in which nodes with different degrees
reinforcement processes. This could be the case for the aiare arranged in a hierarchical way as indicated by the clus-
port network wherg8=1.5 is observed12]. tering and correlation properties measured in the obtained

An interesting consequence is then observed for the deietworks.
gree and strength probability distribution. While both distri-  While many other parameters and dynamical features may
butions still behave as power lawB(k)~k * and P(s) be entering the dynamics of real-world networks, we believe
~s7%, as shown in Fig. 12, they exhibit different exponentsthat the present model might provide a general starting point
7s and > s in contrast with all the situations considered for the realistic modeling of several systems where the inter-
previously where we foungs=y,. This is obviously linked play of topology and traffic is a key point in the determina-

to the fact thaiB# 1 and it is not difficult to show that tion of the global network’s properties.
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