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Abstract. The configuration model is one of the most successful modaelgénerating uncor-
related random networks. We analyze its behavior when tpea&d degree sequence follows a
power law with exponent smaller than two. In this situatithe, resulting network can be viewed as
a weighted network with non trivial correlations betwearsgth and degree. Our results are tested
against large scale numerical simulations, finding exoeligreement.

INTRODUCTION

Complex networked systems represent better than any dtkeidéa of complexity.
When looking at their large scale topological properties| metworks are far more
complex than classical random graphs [1, 2], showing emgrgiioperties not obvious at
the level of their elementary constituents —the small-dieffect, scale-free connectivity,
clustering, degree correlations, etc. When looking at greachical processes that take
place on top of them, these large scale topological prasehtave striking consequences
on the behavior of the system —absence of epidemic threstesdidience to damage,
etc. The understanding that many real world systems ofaotgrg elements can be
mapped into graphs or networks has led to a surge of intardsei field of complex
networks and to the development of a theoretical framewalbis to properly analyze
them [3, 4] B]. Under this approach, the elements of the syate mapped into vertices
whereas interactions among these elements are representmtyes, or links, among
vertices of the network.

In an attempt to bring nearer theory and reality, many reseas working on the
new rapidly evolving science of complex networks have régeshifted focus from
unweighted graphs to weighted networks[6] 17,18, 9,110, 1dm@only, interactions
between elements in network-representable complex retsg -may they be com-
munication systems, such as the Internet, or transpantatfoastructures, social com-
munities, biological or biochemical systems- are not of ¢hene magnitude. It seems
natural that the first more simple representations, whegesbetween pairs of vertices
are quantified just as present or absent, give way to morelesrapes, where edges are
no longer in binary states but may stand for connectionsftd@reént strength.

In an unweighted network, all the topological properties ba expressed as a func-
tion of the adjacency matrix;j, whose elements take the value 1 when vertiGesl |
are connected by an edge and 0 otherwise. Using this mdtexidgree of a vertex —the



number of neighbors or connections it has— becomes

k=3 Aj. @
J

The distribution ofk;, P(k), is called the degree distribution of the network, and it
arises as the most fundamental topological character&tigrisingly, in a vast majority

of cases, real networks show degree distributions follgwpower laws of the form
P(k) ~ k™Y for k> 1 and 2< y < 3. This implies that the second moment of the degree
distribution, (k?), diverges in the thermodynamic limit, which causes the lufsany
characteristic degree scale. For this reason, these dasstworks are called scale-
free (SF). This feature of the degree distribution is, ewalhy, the responsible for the
surprising behavior of dynamical processes that run on toipese networks.

For weighted networks, the adjacency matrix is no longeiftineamental quantity
ruling the properties of the network. Instead, we have tesm®T the matrixgj, which
measures the weight between the pair of verticasd j, that is, the magnitude of the
connection betweenand j. The analogous quantity to the vertex degree is now the
vertex strength, defined as

s =) WjAj. (2)
]

This quantity measures the total strength of vertag the sum of the weights of all its
connections. If the weights of a given vertex are not coteelavith the vertex degree,
the average strength of a vertex of degkeis simply given by

S(ki) = (w)ki, 3)

where(w) is the average weight of the edges of the network. In thisgdn, strength
and degree are proportional and weights do not incorporates imformation to the
network than that already present in the adjacency mateal Retworks show, however,
a very different scaling, with a non trivial relation betwestrength and degree of the
form

5~ K, 4)

with B # 1 (typically B > 1). This anomalous scaling reveals the presence of correla-
tions between strength and degree and, thus, the need td metderk formation in

an weighted basis, where the evolution of the network isdthto the evolution of the
weights assigned to connections. In this paper, we presemdel of weighted net-
work based on the configuration model. We shall show thatyjvthe expected degree
sequence follows a power law with exponent smaller than & rélsulting network is
weighted and shows a non trivial scaling between strengittdagree.

THE CONFIGURATION MODEL

The configuration model was first introduced as an algorithrgenerate uncorrelated
random networks with a given degree distributi®k) [12, 13,114, 15]. The model



operates in two steps:

+ We start assigning to each vertiexut of a set olN, a number of “stubs’k;, drawn
from the distributiorP(k), under the constraint that the suimk; is even.

« Pairs of these stubs are chosen uniformly at random and thesponding vertices
are connected by an undirected edge.

Given the random nature of the edge assignment, this aigogenerates networks with
the expected degree distribution and no correlations letwiee degrees of connected
vertices. The model, as described above, allows the foomafimultiple or self connec-
tions among vertices. Nevertheless, when the expecte@elegstribution has bounded
fluctuations, the number of such “pathological” connedimsmall an can be neglected
in the thermodynamic limit. In this case, one can add an edrstraint in step two of
the algorithm avoiding multiple or self connections withmodifying the resulting net-
work.

The picture changes drastically when the expected degsaédtion has unbounded
fluctuations. This is precisely the case of SF distributiaith exponenty € (2,3]. In
this situation, vertices with expected degree satisfying /(K)N cannot avoid to
form multiple connections. Indeed, as it was proved.in [16& number of multiple
connections in this case scaledN&s Y InN. Yet the situation is not so dramatic since the
overall number of connections is much larger that the nuroberultiple connections.
However, one has to be careful because the “hubs” of the metatbose in the tail of
the distribution— are precisely the ones more prone to halttiple connections and,
therefore, it could alter the results of dynamical processealuated on top of these
class of networks. There are two strategies one can folloarder to avoid multiple
connections:

« One can introduce a constraint in step two prohibiting rplétconnections. This
has the side effect of introducing strong disassortatiygeke correlations among
connected vertices.

- Alternatively, one can introduce a cut-off in the distrilout P(k) scaling asy/N.
By doing so, one recovers uncorrelated networks but withalsncut-off than the
natural onel[17].

THE CONFIGURATION MODEL BEYOND y=2

The configuration model with expected degree distributidh w< 2 has not been stud-
ied so forth. This is an extreme situation in which the nundfenultiple connections
cannot be neglected. We can take advantage of this fact strooha weighted network,
where the weight between a pair of vertices is the number dfipleiconnections they
have [11) 18]. Now, the expected quantity of a given vertaxadonger its degree but
its strength. Therefore, let us change notation and denoRés) ~ s (1170 0< 1 < 1,
the distribution of expected strengths, that is, the nundbexxpected connections of
vertices.



At the level of strength, vertices are uncorrelated and tlezage weight of edges
linking nodes of strengths ands;j can be written as
5. — 35S
M] - 287
whereSis the total number of connections —regardless they areiptautir not— in the
network, that is,

(5)

_ 1 1/t
S=3 IZS N (6)
The average degree of a vertex can be obtained as

k=3 @o(l-aj)+y e@ -1, (7)
J J

whereO(-) is the Heaviside step function. The first term in this equat®the con-
tribution of those connections that, on average, are smiidn 1. The second term
represents connections with an average number larger taad, thus, holding multiple
connections. In this case, the contribution to the degr@estsl and notu;. Using the
expression for the weights, E@ (5), in the continuum limit @an write

SS; *

— 2S/s
(s) =N [ P(s) Jads +N o P(si)ds (8)

that, in the thermodynamic limit goes as

It is worth noticing that there are finite size effects thgbeled on the specific form of
the strength distribution. The model generates a non tnveaghted network with an
exponen{3 = 1/1 larger than 1, as it is observed in real weighted networks [9]

The tail of the degree distribution can be obtained from $kbaling relation, yielding
an exponeny = 2. Thus, even though the expected strength distributiomha&xponent
smaller than two, the resulting network has exponent equalvbd and a number of
connections growing &as; ki ~ NInN.

NUMERICAL SIMULATIONS
To test the results of our analysis, we have performed nwalesimulations of the
configuration model, generating expected strength digighs of the form
_
(S— Sc)l+T :

The value ofs; modulates the probability to find strengths of value largpant 1. We
choose this particular form because, by an appropriateeluds;, the finite size effects

P(s) ~ (10)
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FIGURE 1. Cumulative strength distributions, that B&(s) = S ¢-<P(s), used in the simulations. The
solid lines correspond to the theoretical curves given by(Ed)
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FIGURE 2. Simulation results for the average degree of vertices ehgths, k(s), as a function of

s, for T = 0.95, T = 0.85, andr = 0.75. The size of the network i = 1C°. In all cases, the strength
distribution is given by Eq[T10) witk. = 1. Solid lines correspond to the best fit estimates (numbers in
parenthesis into the legend box) of the theoretical beln&yg) ~ s.
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FIGURE 3. Cumulative degree distribution,(k) = ¥ w_x P(K'), generated by de model. The solid line
is power law of the fornk~1 corresponding to an expongni= 2.

are minimized. In all the simulations, the size of the netisiN = 10°, the values of
T are 195, 185, and 175 ands. = 1. We first show, in Fig[]l, the cumulative strength
distributions used in the simulations as compared to therétieal ones,

(1-1)°
(s—1)7’

computed using the continuum approximation.

Fig. [@ shows the scaling relation betwekfs) and the strengtls. As it can be
seen, the theoretical predictishis well satisfied, with the following estimates for the
exponent3—1: B~1 =0.744+0.01 for T = 0.75, 3~ = 0.84+0.01 for r = 0.85, and
B~1=0.95+0.01 for T = 0.95. Finally, the resulting cumulative degree distribution
plotted in Fig[B, showing that this function goes, for ladggrees, ak~* independent
of 1, as predicted by our analysis.

Pc(s) = (11)

CONCLUSIONS

In summary, we have analyzed the behavior of the classicdigioration model in the
case of expected strength distributions following a powaer form of exponent smaller
than two. We have shown that, in this case, the resulting or&tve weighted, where
the weight stands for the number of multiple connectionsragneertices. The model
presents a non trivial scaling relation between strengthdgree and a degree distri-
bution with exponeny = 2, independent of the exponent of the strength distribution



These results highlight the subtleties that may arise wiealitty with SF networks even
in the most simplified models.

ACKNOWLEDGMENTS

This work has been partially supported by DGES of the Spag@lernment, Grant
No. FIS2004-05923-C0O2-02, and EC-FET Open project COSIN2@)1-33555. M.
B. acknowledges financial support from the MCyT (Spain).

REFERENCES

1. P.Erdés and A. RényRubl. Math, 6, 290-297 (1959).
2. P. Erdds and A. RényiBubl. Math. Inst. Hung. Acad. S¢b, 17—61 (1960).
3. S. N. Dorogovtsev and J. F. F. MendEsplution of networks: From biological nets to the Internet
and WWWOxford University Press, Oxford, 2003.

Albert and A.-L. BarabasRev. Mod. Phys74, 47 (2002).

N. Dorogovtsev and J. F. F. Mendady. Phys51, 1079 (2002).

E. J. NewmanPhys. Rev. F64, 016132 (2001).

H. Yook, H. Jeong, A.-L. Barabasi, and Y. Rhys. Rev. Lett86, 5835-5838 (2001).
D. Noh and H. RiegeRhys. Rev. F56, 066127 (2002).

Barrat, M. Barthelemy, R. Pastor-Satorras, and A. \gsmi, Proc. Natl. Acad. Sci. U.S.AL0],
3747 (2004).
0. A. Barrat, M. Barthelemy, and A. VespignaRhys. Rev. Lett92, 228701 (2004).

M. E. J. Newmar?hys. Rev. E70, 056131 (2004).
12. A. Bekessy, P. Bekessy, and J. Kom®Bgyd., Sci. Math. Hungar7, 343-353 (1972).
13. E. A. Bender and E. R. Canfieldl, Comb. Theory A24, 296-307 (1978).
14. M. Molloy and B. ReedComb., Prob. and Compu®, 161-179 (1995).
15. M. Molloy and B. ReedComb., Prob. and Compuf, 295-305 (1998).
16. M. Bogufia, R. Pastor-Satorras, and A. Vespigriami, Phys. J. B38, 205-209 (2004).
17. M. Catanzaro, M. Bogufia, and R. Pastor-Satoo@sg-mat/040811,§2004).
18. M. A. Serrano, M. Bogufia, and A. Diaz-GuilePays. Rev. Lett94, 038701 (2005).

4. R.
5. S.
6. M.
7. S.
8. J.
9. A



	Introduction
	The configuration model
	The configuration model beyond =2
	Numerical Simulations
	Conclusions

